

CVS/TortoiseCVS Administration

An enterprise guide

January 2005

Released under the GPL: http://www.gnu.org/copyleft/gpl.html
Written by Graham Crockford

www.cafit.co.uk

http://www.gnu.org/copyleft/gpl.html
http://www.cafit.co.uk/

CAfIT’s CVS/TortoiseCVS Enterprise Guide

1. Introduction ...3
1.1 Aim of this document ...3
1.2 Scope ..3
1.3 Intended audience...3
2. Resources...4
2.1 CVSNT ...4

2.1.1 Web links ... 4
2.1.2 Documentation.. 4
2.1.3 Support.. 4

2.2 TortoiseCVS..5
2.2.1 Web links ... 5
2.2.2 Documentation.. 5
2.2.3 Support.. 5

2.3 Other...6
2.3.1 Textpad.. 6
2.3.2 WinMerge ... 6
2.3.3 WinCVS.. 6

3. Configuration and deployment ...6
3.1 Server ...6

3.1.1 Filesystem .. Error! Bookmark not defined.
3.1.2 Installation/updates... 6
3.1.3 Basic setup ... 7
3.1.4 Anatomy of a sandbox ... 8
3.1.5 Anatomy of the repository .. 8
3.1.6 A major bug.. 9
3.1.7 Configuring the CVS server – “CVSROOT”... 10
3.1.8 Decide policy .. 11
3.1.9 NTFS permissions .. 12
3.1.10 Backups ... 12

3.2 Clients ... 13
3.2.1 Installation ... 13
3.2.2 Backup simplicity vs. Performance ... 13
3.2.3 Designing a standard configuration .. 13
3.2.4 Setting up some useful defaults .. 16
3.2.5 Deploying config and defaults across multiple machines ... 17
3.2.6 Explorer settings ... 17

4. In use...18
4.1 Safe practices ... 18

4.1.1 Merging.. 18
5. Maintenance...18

5.1.1 The command line ... 18
5.1.2 Software updates and deployment... 18
5.1.3 Permissions at branch level... 19
5.1.4 Merging.. 19

6. Troubleshooting ...21
6.1 Q&A .. 21

6.1.1 "No such tag <tag>” errors .. 21
6.1.2 “Permission” denied writing “val-tags” file .. 22
6.1.3 Invalid characters in fileattr.xml .. 22
6.1.4 Watch mode gets turned off.. 22
6.1.5 Hanging edits.. 23
6.1.6 Moving servers causing disconnected sandboxes ... 24

© CAfIT 2005
http://www.cafit.co.uk 2 of 24

CAfIT’s CVS/TortoiseCVS Enterprise Guide

1. Introduction
1.1 Aim of this document

This document aims to give an in-depth view of a successful implementation of
CVSNT (Server) and TortoiseCVS (Client) in a small-to-medium-size enterprise
environment based on a Windows 2003 Server and Windows 2000/XP Clients.

It covers as much as possible of the daily and regular maintenance tasks required
and best-use practices. Note, however, that these practices are what we have
come to over time and may not necessarily suit all environments. Backup and
sandbox storage policy have been strong bones of contention (see 3.2.2).

1.2 Scope
• Required applications, download sites, support URLs
• Working with Open Source software and the OSS community
• Server configuration
• Client configuration
• Update checking, deployment, issues arising from updates
• Fault recognition and resolution

Not covered:

• Relative merits of CVS versus other open source or commercial systems.
SVN (http://subversion.tigris.org/), intended as a modern replacement for
CVS and now fairly stable, has been interesting us for some time and will be
worth considering once reserved checkouts are available (expected early
2005)

• Migration to CVS from other source code management systems (we migrated
from SourceSafe using a modified version of one of the migration tools
available)

• How CVS works (a working knowledge of CVS is required)
• How to use TortoiseCVS, WinCVS, WinMerge or any other applications

described except in the cases of specific workflow strategies or configuration
settings, which can improve the system in an enterprise environment. It is
recommended that some time be taken “playing” with a test
CVSNT/TortoiseCVS setup to familiarise yourself with the software before
reading this document.

1.3 Intended audience
This document is aimed at:

• Any enterprise considering CVS as a source code management platform
• Enterprises with existing CVS installations looking for maintenance tips

© CAfIT 2005
http://www.cafit.co.uk 3 of 24

http://subversion.tigris.org/

CAfIT’s CVS/TortoiseCVS Enterprise Guide

2. Resources
2.1 CVSNT
2.1.1 Web links

CVSNT’s commercial presence is via March Hare Software, who provide security
update notification, patches, telephone support, installation and training. However
the product itself is free, and compiled binaries packaged into a windows installer
are available from http://www.cvsnt.com

2.1.2 Documentation
There is extensive documentation available at the main CVSNT site, but if this is not
sufficient (e.g. for Q&A), we have found that a Google search
(http://www.google.com)
is the most effective method of quickly finding answers to problems people have
encountered before.

A common search string may take the form

 CVSNT Commit “Socket error -1”

To search for help on a “Socket error -1” error that occurred whilst trying to commit
a file.

2.1.3 Support
If something goes wrong and you can’t find the solution, your only recourse is to
report the error and then track its progress through resolution and release. Most
often, however, the development team will offer advice and help which will
circumvent the issue, so do this ASAP.

From the CVSNT Support Wiki at http://www.cvsnt.org/wiki :

© CAfIT 2005
http://www.cafit.co.uk 4 of 24

http://www.cvsnt.com/
http://www.google.com/
http://www.cvsnt.org/wiki

CAfIT’s CVS/TortoiseCVS Enterprise Guide

There are four mailing lists provided:

cvsnt: General support and help for users of cvsnt
cvsnt-dev: Development and future plans for 2.1.x branch
cvsnt-commits: Track commits to cvsnt development tree
cvsnt-bugs: Bug status reports

Alternatively, they can be accessed via News:

support.cvsnt: General support and help for users of cvsnt
cvsnt-dev: Development and future plans for 2.1.x branch
support.cvsnt-commits: Track commits to cvsnt development tree
support.cvsnt-bugs: Bug status reports

It is generally good manners to join these groups anyway and offer support to
others when possible – open source software many be free but that is because it
relies on the support of its users.

2.2 TortoiseCVS
2.2.1 Web links

The main TortoiseCVS site is at http://www.tortoisecvs.org and the SourceForge
project can be found at http://sourceforge.net/projects/tortoisecvs/ .

Updates appear extremely regularly at times and often fix new issues created by a
previous release. It is therefore important that new releases are at least smoke
tested by an experienced technician before being deployed.

Updates are made available at: http://www.tortoisecvs.org/download.shtml but
check the changelog first: http://www.tortoisecvs.org/stablechangelog.shtml

2.2.2 Documentation
TortoiseCVS ships with a CHM (Microsoft Help) format manual, or it can be
downloaded at: http://www.tortoisecvs.org/UserGuide_en.chm

Again, Google can be helpful at times.

2.2.3 Support
As with CVSNT; however, as TortoiseCVS is on SourceForge, the process is a little
cleaner.

Register at SourceForge (http://www.sourceforge.net) and then check the
outstanding bugs: http://sourceforge.net/tracker/?group_id=48103&atid=451972

If you don’t find the issue, you can create a new issue and this will be responded to
fairly quickly. However, the response can be hostile if you repeatedly raise errors
which are (a) already registered (b) not TortoiseCVS’s fault (e.g. server issues,
windows configuration) or (c) RTFM1.

1 Read the “friendly” manual.

© CAfIT 2005
http://www.cafit.co.uk 5 of 24

http://www.cvsnt.org/cgi-bin/mailman/listinfo/cvsnt
http://www.cvsnt.org/cgi-bin/mailman/listinfo/cvsnt-dev
http://www.cvsnt.org/cgi-bin/mailman/listinfo/cvsnt-commits
http://www.cvsnt.org/cgi-bin/mailman/listinfo/cvsnt-bugs
news://news.cvsnt.org/support.cvsnt
news://news.cvsnt.org/support.cvsnt-dev
news://news.cvsnt.org/support.cvsnt-commits
news://news.cvsnt.org/support.cvsnt-bugs
http://www.tortoisecvs.org/
http://sourceforge.net/projects/tortoisecvs/
http://www.tortoisecvs.org/download.shtml
http://www.tortoisecvs.org/stablechangelog.shtml
http://www.tortoisecvs.org/UserGuide_en.chm
http://www.sourceforge.net/
http://sourceforge.net/tracker/?group_id=48103&atid=451972

CAfIT’s CVS/TortoiseCVS Enterprise Guide

2.3 Other
2.3.1 Textpad

Textpad is an excellent text editor with superlative search capabilities, worth it if
only for the fact that it adds a “Textpad” option to the explorer context menu on
every file type, including extensionless files: http://www.textpad.com

2.3.2 WinMerge
By far the best merge and diffing tool for use with TortoiseCVS.
http://www.winmerge.com

2.3.3 WinCVS
TortoiseCVS was derived from this relatively heavyweight CVS client. These days
we rarely need to use it although it can be very handy when TortoiseCVS’s
performance gets irritating.

3. Configuration and deployment
3.1 Server
3.1.1 File system

First of all, designate a directory on your server to be the repository. You can in
fact have several repositories, but the single-repository model matched our original
SourceSafe setup most closely so it made migration easier. Don’t share this
folder over the network – except as directed in 3.1.9, below. CVSNT is a client-
server system and does not use Windows file shares (SMB) to transfer files.

3.1.2 Installation/updates
The installer for CVNT runs as a simple wizard. This should run with no problems
for the first time.

However, on Windows 2003 Server, we have encountered a problem when updating
an existing installation with the new version. Installation pauses with an error
informing you that cvslock.exe is locked (sometimes it can be a different file).

At this point, the installer will wait for you to specify Retry, Cancel, Abort.

The problem is caused by the WMI (Windows
Management Instrumentation) service. We need
to stop this service temporarily in order to continue.

• Leave it waiting for the moment and open the Services Management Console
Applet (Right-Click My Computer > Manage > Services).

• Locate the Windows Management Instrumentation service.
• Check that this service is not required by any mission-critical systems, or

wait for scheduled downtime.
• Stop the service.
• Return to the installer and hit Retry. CVSNT should now install.
• Restart the WMI service.

© CAfIT 2005
http://www.cafit.co.uk 6 of 24

http://www.textpad.com/
http://www.winmerge.com/

CAfIT’s CVS/TortoiseCVS Enterprise Guide

3.1.3 Basic setup
Once installed, CVSNT can be set up from the control panel applet:

First, you need to configure the repository directories. We only use one repository,
split into modules, but this is a matter of taste.

Starting and stopping the server is simple, just remember to start both the main
service and the lock service.

© CAfIT 2005
http://www.cafit.co.uk 7 of 24

CAfIT’s CVS/TortoiseCVS Enterprise Guide

3.1.4 Anatomy of a sandbox
In addition to the well-documented .cvsignore file (see the TortoiseCVS
documentation), if you show hidden files in explorer (no doubt you always do –
although you will find that turning this off makes working with CVS much neater!)
you will find a hidden directory called CVS in every sandbox directory, at every
level.

A great deal of server information is cached here, to minimise communication with
the server. Common maintenance issues occur if this data gets out of sync with the
server.

Base – this directory contains gzipped copies of any edited files, taken at edit time.
They are used to restore a file back to its previous state if it is unedited instead of
committed.

Entries - This file contains a list of all the files and directories within this directory,
which are under version control. If a file is in the directory but is not on this list,
TortoiseCVS will mark it as not under version control (and give the option to add it,
unless you have it in an ignore list). Equally, if, at update time, a file in this list is
missing from the directory, it will be replaced from the repository. Alongside the
file names are stored the last modified date for the “sticky” repository version, and
that version’s number. If the modified date of the file is later than this date, it can
be marked as “modified” by TortoiseCVS.

Entries.Extra, Entries.Extra.Old and Entries.Old – We’re not quite sure what
these are for, but when meddling by hand with Entries, we have always made the
effort to make analogous changes to these files too.

Repository – This gives the relative path of the directory within the repository.

Root – This gives the server address and repository path. Note that if you change
the address of the server, all the sandboxes will be out of date and will not work.
See 6.1.6 for information on how to resolve this.

3.1.5 Anatomy of the repository
Once you have created the directory tree in your sandbox and added it, you will
note that a mirror structure has appeared in the repository on the server. This
simply consists of the directory tree, with each file in it (with “,v” appended to the
filename) and lots of files called fileattr.xml in directories called CVS.

The ,v files are RCS repository files. CVS is designed as a wrapper around RCS,
which maintains a repository of individual version-controlled files. RCS was
perfectly adequate as a single machine, single file version control system, but CVS
adds all the features required to make it a project level system, including
concurrency and a client-server model.

© CAfIT 2005
http://www.cafit.co.uk 8 of 24

CAfIT’s CVS/TortoiseCVS Enterprise Guide

If you open the files you may be able to decipher what you see, which will be a list
of version numbers, tags and branches, with dates, comments, permissions etc.
After these will be a full copy of the text of the latest version of the file followed by
a series of reverse diffs to take you progressively back to the initial version. This
has been shown over time to be the most space efficient storage method when
balanced against speed – checkouts of the latest version (the most common form of
checkout) are very quick, and the process gets slower the further up the version
tree you go, although diffing is a relatively cheap operation on text files.

We have never seen corruption of RCS files – it is at least 14 years old at time of
writing and has been in mission critical use for most of that time! As a result it is
rare that you will need to “hack” these files.

The fileattr.xml files are less trustworthy and are the most common source of
repository corruption, although such corruptions are rarely damaging – as usual
CVS has a tendency to “fail-safe” and stop any CVS operations working at all..

fileattr.files are well-formed XML listing file and folder level settings. This is where
“watch mode on” for a directory is actually stored, as well as branch level access
controls and file edits. Reading them is fairly self-explanatory, but try editing and
unediting files in your sandbox and watching the file change.

3.1.6 A major bug
This deserves a special mention; although it may be fixed by the time you read this.
With CVSNT 2.0.58d and a few previous versions, file or directory names with an
ampersand (&) will cause a corruption of the fileattr.xml file belonging to the parent
directory. Examining the XML may result in you missing the problem several times
since it is fairly obscure – the ampersand is a control character in XML. In
order to put ampersands into XML one should write &.

CVSNT (which is used on both client side – by TortoiseCVS itself – and on the server
side) just writes the ampersand and thus causes the file to be corrupted.

In short, do not allow the ampersand to be used in file or directory names in
CVS. This should be a matter of policy until the bug is fixed.

© CAfIT 2005
http://www.cafit.co.uk 9 of 24

CAfIT’s CVS/TortoiseCVS Enterprise Guide

See 6.1.3 for some advice on recovery if you end up with a well-populated directory
with an ampersand in the name, containing several files, which are being edited by
several people before this bug is uncovered...

3.1.7 Configuring the CVS server – “CVSROOT”
Most of the configuration of CVS can be carried out in real-time without resetting
the server. A special module exists in each repository called CVSROOT. Watch
should always be off for this module.

CVSROOT contains a number of config files, which can be edited on a local sandbox
and then committed to apply them immediately. A useful side effect is that this
means a full history of configuration changes are kept, right from installation. This
makes it easy, for example, in this case, where I want to double check exactly what
changes we made to get everything to work!

A full explanation of all configuration options can be found in the CVSNT
documentation. Here is a list of changes we made that may prove useful:

config – We just set LockServer=localhost:2402 – by default CVS stores lock
files in the repository, which means that users need NTFS read and write access to
a directory just to view it. Lockserver enables file locking using an external service
provided in the CVSNT package instead, so we can give certain users only read
access at the file level.

admin – This file is just a text list of the user names which will be allowed to carry
out administration tasks, such as calling cvs admin or changing any files in
CVSROOT. Note that this file is normally an exception in that it is not under version
control – a user checking out CVSROOT will not get a copy. To update it, you need
access directly to the repository.

checkoutlist – Following on from admin, the only change we made here was to
add the admin file into the list of additional files in CVSROOT to put under version
control. This is not recommended behaviour – it is considered more secure for no-
one other than those which direct access to the repository to be able to see this file,
but we have sufficient confidence in NTFS permissions to put this under version
control and make it visible in CVSROOT.

modules - We added two lines:

All -a !Archive !CVSROOT .
Build -a Project1 Project2 Project3

The first line creates an alias module called “All” which when checked out actually
checks out every module in the repository at once. This is useful when first
creating a sandbox. Note that it works by just checking out everything except
Archive and CVSROOT, which are both system modules.

© CAfIT 2005
http://www.cafit.co.uk 10 of 24

CAfIT’s CVS/TortoiseCVS Enterprise Guide

The second line is similar but is instead inclusive, containing as it does a list of the
modules to check out. In this case it contains everything necessary to do a build.
Again useful for our automated build process.

3.1.8 Decide policy
CVS works well when used in the way it was designed – with no notion of a “lock”
on a file such as with Microsoft SourceSafe’s “Check Out”. Many users can use the
same files simultaneously and commit their changes in any order, as long as they
are capable of merging in their changes at commit time.

However, this is not an option, which is available with binary (non-text) files. There
is no (consistent) way of comparing two binary files for changes and displaying
them in such a way that update anomalies can be resolved and changes merged.
For files created by individual applications such as Microsoft Word, partial solutions
exist, but these are obviously specific to these files and not to binary files as a
whole.

Our big problem was hit with Visual Basic. It stores binary data attached to Forms
and User Controls as .frx and .ctx files respectively, which very much require
version control. The CVS community tends to be unsympathetic in this case –
technologies such as XML have made even Microsoft switch to text for its .NET
platform, and use of binary files is viewed as increasingly restrictive. However, this
doesn’t help us!

The only way to prevent update anomalies is to enable reserved checkouts (“watch
mode”) on CVS. This changes the edit workflow from:

• Change file
• CVS Update
• CVS Commit

To

• CVS Edit
• Change file
• CVS Update
• CVS Commit
• CVS Unedit

The “Edit” and “Unedit” operations being calls to the CVS server to indicate that
you are changing the file or have finished changing the file respectively. In the
case of text files, CVS will simply warn another user if they try and edit the
same file. However, in the case of binary files, CVS will refuse to issue an Edit
on any file which is already Edited.

On CVS modules where this “watch mode” is turned on, the client (such as
TortoiseCVS) can be configured to check out sandbox files read-only, and mark
them as writable when the user carries out an edit.

This appears to fix the problem, but has some drawbacks.

1. A user does not have to ask for an edit. The commit operation is

completely independent of the edit/unedit process. Therefore the user can
just mark the file as writable, make the changes and commit, regardless of
whether another user has an edit.

© CAfIT 2005
http://www.cafit.co.uk 11 of 24

CAfIT’s CVS/TortoiseCVS Enterprise Guide

2. Edits can be tricky to maintain. Users have a tendency to abandon
sandboxes, or delete and re-checkout, leaving their edits hanging, and start
on new sandboxes, which appear to contain unedited files. Until recently, a
bug existed in TortoiseCVS where files did not automatically get unedited
after commits, leading to the same effect. In addition, it often happens that
hanging edits are impossible to remove using the usual admin commands,
necessitating hard editing of CVS’s repository files (more on this shortly).

The majority of problems arising due to these issues can be avoided. (1) can be
avoided via strict company policy. Much of (2) just comes down to periodic
clearups of edits and regular requests from users to clear them as required.

In our experience, with proper procedures in place, most problems have “failed
safe”, in that they have created maintenance tasks, rather than errors.

If you have decided to use watch mode, you can enable it across the entire
repository by CD-ing into the root of a sandbox folder at a command prompt and
typing:

cvs watch on –R

This will turn on watch mode recursively for every folder in the module. Omitting
the –R will just act on the files in the folder and not recurse subdirectories.

Users’ sandboxes will need to be re-checked out to pick up this change.

3.1.9 NTFS permissions
To use NTFS permissions (which is assumed throughout this document) ensure that
all clients connect to the CVS server using SSPI authentication. Turning off all
other types during installation can enforce this.

Logon to CVS will become transparent and NT usernames will then be used
throughout. File permissions will apply to all server threads as they are opened for
a specific user’s request, so you can use NTFS permissions to grant or deny access
to certain areas of the repository based on username/group.

Put simply, as long as you enable lockserver (see 3.1.6) setting NTFS permissions is
fairly intuitive. We created a group, “CVS Admins” and gave this group full
read/write access to the repository. In addition we shared the repository folder and
denied everyone access to the share except the CVS Admins group. This is
essential for some fault resolution.

Beyond this, you might grant R/W access to some projects and read-only access to
others on a person-by-person or group basis. As long as everyone has read access
to Archive and CVSROOT, there should be no problems with this.

For permissions at branch level, see 5.1.3.

3.1.10 Backups
Since all CVS configuration and data is stored in a single directory tree, and locks
are managed by an external service, there should be no danger in simply backing
up the repository directory overnight. Indeed we have been doing this for some
time with no difficulties encountered.

© CAfIT 2005
http://www.cafit.co.uk 12 of 24

CAfIT’s CVS/TortoiseCVS Enterprise Guide

We have not looked into the dangers of backing up whilst the repository is active,
e.g. during the working day. Atomic commits are, to our knowledge, not
implemented in CVS (this is trumpeted as one of SVN’s major features –
http://subversion.tigris.org) so there is a theoretical risk.

3.2 Clients
3.2.1 Installation

Our recommended setup consists of installing:

• TortoiseCVS
• WinMerge

Both have simple install wizards.

3.2.2 Backup simplicity vs. Performance
It is recommended by both the CVSNT and TortoiseCVS communities that you don’t
store your CVS sandboxes on a network drive.

From the point of view of the CVSNT server, it greatly increases bidirectional
network traffic, causing communication to slow down (and therefore CVS operations
to take more time).

From the point of view of TortoiseCVS, it suffers from a feature of Windows
Explorer. Files updated by the local machine on local drives just cause windows
messages to be sent to explorer, so it can just update its displays on request.
However, no such messaging system works for network shares, so Explorer “polls”
any open directories on a frequent schedule to check for updated files. A large
number of sequential operations on an open folder cause an unbearable slowdown,
to the extent that closing the explorer window and leaving a long operation (for
example, a large directory copy) processing results in a many, many fold increase
in speed. This obviously hits TortoiseCVS, which is regularly called upon to carry
out recursive update or edit/unedit operations on open folders full of files.

Despite all this, we still went for storing sandboxes on network drives. When the
security of data was weighed up, with a RAID array server backed up to tape versus
a room full of budget desktop PCs, it was decided that we couldn’t run the risk of
running a distributed backup process.

This is a decision, which will need to be made. If you have a distributed backup
process/are still planning your process/have no process at all then use local
sandboxes – the performance difference is enormous.

3.2.3 Designing a standard configuration
WinMerge will work from scratch (although we recommend turning the view font
size down a little – 11pt or 10pt allow for greater readability).

However, TortoiseCVS requires configuration, much of which is linked to policy
decisions.

The following screens show our recommended settings, with attached notes where
the reasoning or meaning isn’t clear.

© CAfIT 2005
http://www.cafit.co.uk 13 of 24

http://subversion.tigris.org/

CAfIT’s CVS/TortoiseCVS Enterprise Guide

We find the Timo Kauppinen icons the ones that fit most neatly with the standard
Windows icon set. Do not set the progress dialog to just close – this is
dangerous if it means users ignoring CVS errors.

Automatic Unedit after commit is, in our opinion, essential if you are using
watch mode, and as explained, we decided to make it a matter of policy to force
users to use network drives for their sandboxes, for reasons of security. If you
have a distributed backup strategy this may be unnecessary.

Prune empty folders is a nice option to make sandboxes tidier – without it,
sandbox directories contain all repository directories even if they are empty on the
selected branch. Some find they prefer this option off, in order to see the full
structure of the repository at all times.

© CAfIT 2005
http://www.cafit.co.uk 14 of 24

CAfIT’s CVS/TortoiseCVS Enterprise Guide

We use WinMerge for diff and merge, and make it a practice to install it to the
same location on every machine so we can reuse these settings across machines.

Specifying the directories in which you actually have sandboxes can speed up
browsing performance, as can disabling menu icons - you don’t actually need them
if you have set up the explorer detail columns (see 3.2.6). That said, they make
using the system so much nicer! A good compromise is to not make the folder
icons recursive, so they will only indicate changed files directly within them, rather
than in any of their children, grandchildren, great grandchildren etc.

© CAfIT 2005
http://www.cafit.co.uk 15 of 24

CAfIT’s CVS/TortoiseCVS Enterprise Guide

Setup the global ignore list here. We have a standard list:

• *.bak – Winmerge backup files
• *.vbw – Visual Basic group settings
• *.log – Visual basic error log files
• *.scc – Sourcesafe files (we still had a few after transitioning)
• *.oca – Control TypeLib Caches (created by Windows when OCX objects are

in use)
• *.ldb – Access database lock files
• *.obj – Object build files
• ~$* - Word lock files

3.2.4 Setting up some useful defaults

TODO

© CAfIT 2005
http://www.cafit.co.uk 16 of 24

CAfIT’s CVS/TortoiseCVS Enterprise Guide

3.2.5 Deploying config and defaults across multiple machines
TortoiseCVS stores most of its configuration in a registry key:

[HKEY_CURRENT_USER\Software\TortoiseCVS]

We handle multiple deployments by getting TortoiseCVS set up on a single PC, and
then using regedit to export this registry key to a file. To apply it to any machine,
you just need to run this .reg file and then log off/log on.

The only other source of configuration information is the global ignore list, which is
stored in the user’s home directory. We take a copy of this file, and put it in a well-
publicised network share, along with the registry data, the latest version of
TortoiseCVS and the latest version of WinMerge. This makes deployment as quick
as possible.

3.2.6 Explorer settings
We consider it essential to have Windows Explorer set into Detail mode (View >
Details) and to then to turn on the CVS columns, by right-clicking on the column
headings and selecting More...

Once these have been applied, use Tools > Folder Options > View > Apply to
All Folders to ensure these columns are always there.

© CAfIT 2005
http://www.cafit.co.uk 17 of 24

CAfIT’s CVS/TortoiseCVS Enterprise Guide

4. In use
This section covers some useful advice on CVSNT/TortoiseCVS in use and the best
practice to avoid problems. Hopefully it will grow over time.

4.1 Safe practices
4.1.1 Merging

When you attempt to commit a file and another user has changed it since you last
did an update, you will receive an out-of-date error and be told to update. At this
point, the differences between the version you changed and the version the other
user committed are merged into your working file. If CVS can’t do this
automatically, it will open you diff/merge program and ask you to resolve the
conflict.

In order to second-guess CVS’ automatic merging, and indeed to double-check
one’s own code changes, we have found the following procedure beneficial. It
assumes you are using WinMerge as your diff/merge tool.

• Take any bits of code from the left hand side (LHS), which are missing from
the right hand side (RHS) and add them to the RHS. This will often mean a
mangled file with repeating sections of code. Don’t worry about this for the
time being.

• Save and quit WinMerge.
• Diff the file against CVS. You should find that the only differences are the

changes that you made. Anything else should be fixed/removed, since you
now have the other user’s changes in your working file.

• In the directory with the merged file, find the CVS backup file for the file it
automatically merged (usually the file name with a version number
appended). Load this as the LHS into WinMerge and diff with your working
file. Since you are now comparing your file pre merge on the LHS and post
merge on the RHS, you can see exactly what the merge process did.
Consult and modify as required.

• Commit.

5. Maintenance
5.1.1 The command line

It is important when maintaining a CVS deployment that the support engineer
becomes familiar with using CVS from the command line. The command line can be
used interchangeably with TortoiseCVS or indeed any other CVS client.

Full documentation can be found on the main CVSNT website.

5.1.2 Software updates and deployment
Checking
Our procedure is to try and keep the versions of CVSNT used by the installed
version of TortoiseCVS and the version installed on the server the same.

We regularly check for updates to the stable TortoiseCVS (which can appear almost
daily at times) and run this version on one or more machines (usually the machines
of those responsible for maintaining CVS).

© CAfIT 2005
http://www.cafit.co.uk 18 of 24

CAfIT’s CVS/TortoiseCVS Enterprise Guide

Once this version has been working with no issues and no significant bug fix
releases for a couple of weeks, we mark it as stable. If it introduces bug fixes,
which, if left unrepaired, could affect us, or introduces useful new features, we will
deploy it to existing client machines.

Deployment
The install procedure is sufficiently simple to just e-mail around a link to the
installer and ask all users to run it. As long as the user just runs the setup and
doesn’t uninstall TortoiseCVS first, the configuration should be kept and that should
be all that is involved. This may be unsuitable for larger organisations, however.

CVSNT versioning
If an update to TortoiseCVS includes a new version of CVSNT, we usually take this
opportunity to upgrade the server. Apart from being a suitable opportunity, CVSNT
often introduces compatibility issues with older client versions as updates appear –
it is easiest to avoid these by keeping the client and server versions in-line.

Updating the server is normally straightforward (stop services, run setup, start
services), except on Windows 2003 Server (see 3.1.2)

5.1.3 Permissions at branch level
Granting or denying access by branch is not possible using NTFS permissions since
it is at a higher granularity, within individual files. This needs to be done using
CVSNT’s own permissions system using the cvs chacl command.

Detailed documentation can be found on the CVSNT website (a worked example can
be found here: http://www.cvsnt.org/wiki/SetAcl).

Note that the chacl command has undergone several changes recently, apparently
ahead of the documentation, and it may take some time and experimentation to
find the right syntax.

5.1.4 Merging
An Example
If you have created a branch called Release1, to create an effective code freeze
prior to a release, whilst continuing future development on the HEAD, after a short
while a file’s revision graph might look as follows:

1.1

1.2 Release1

1.2.1.1

1.3

1.2.1.2

Let us say that changes 1.2 – 1.2.1.1 and 1.2.1.1 to 1.2.1.2 were bug fixes made
in the weeks leading up to the release. It is necessary that these bug fixes make
their way back onto the HEAD, since the Release1 branch will effectively be closed
once support for this release is abandoned.

© CAfIT 2005
http://www.cafit.co.uk 19 of 24

http://www.cvsnt.org/wiki/SetAcl

CAfIT’s CVS/TortoiseCVS Enterprise Guide

Start and End
Assuming just this one file, we would at this point carry out a merge on the HEAD
branch as follows:

Or “merge Release1 into this branch (HEAD)”. This is a shortcut for:

The Start and End for a merge indicate the two versions between which we want to
find the changes to apply. If the End is omitted, it will be taken to be the latest
entry on the same branch as the Start.

Since in the first case we are saying “take all the changes made on the Release1
branch since it branched from this branch (HEAD), and apply them to this branch”,
the latter case is identical since we have just picked out those version numbers by
hand.

The merge points would look like this:

1.1

1.2 Release1

1.2.1.1

1.3

1.2.1.2

1.4 Merge

Multiple files
In practice, going through this process for every file individually across a large
project, or several projects, is a tedious maintenance task. Therefore, the first
notation (just using Start) really comes into its own – we can just use

© CAfIT 2005
http://www.cafit.co.uk 20 of 24

CAfIT’s CVS/TortoiseCVS Enterprise Guide

Start=Release1 across a large number of directories and files and the merge
should work as expected, where required.

However, there are many issues that arise from this. Firstly, CVS cannot be trusted
to carry out merging across a large number of files unsupervised. There are always
cases that arise where a programmer has moved a function to a different position in
a file (which causes two copies to turn up in the merged result), or lots of similar
functions cause mistakes in diffing – we have ended up with identical error handlers
in consecutive functions causing problems for example.

Secondly, if merges are left for some time and then handled as a batch job by a
single developer, it is likely that (s)he will not be familiar enough with every single
change to either check CVS has done a good job, or resolve conflict cases.

Best practice
In addition to the safe merging practices described in 4.1.1 (this process can be
applied equally well to branch merging), we have come to the conclusion that the
easiest and safest way to maintain two branches is for every developer to merge
every time they commit. This way, they will only be applying the changes they
have made, which will usually be compact and familiar enough to resolve any
conflicts.

6. Troubleshooting
6.1 Q&A

The following are common problems we have encountered and how to resolve
them.

6.1.1 "No such tag <tag>” errors
We have encountered cases where the val-tags file in the repository’s CVSROOT
directory (not under version control) has become corrupted. This file caches the tag
names in use so corruptions can lead to actions on a specific tag failing.

There are several mailing list items relating to these problems, for example:

http://www.cvsnt.org/pipermail/cvsnt/2004-April/012274.html

Here is an example of a corruption that we have encountered:

build-4-0-0-4 y
build-3-2-4-4 y
build-3-2-3-2 y
build-4-0-0-11 y
build-3-2-9-1
y ld-3-2-9-1

 y

build-4-0-0-27 y
build-3-2-12-4 y
build-3-2-12-6 y
build-4-0-0-26p3 y

This file can be fairly easily corrected or you can just delete the contents, or indeed
delete the file, but be warned – if the default permissions are such that any CVS
user gets denied access to the file, you will encounter the error below.

© CAfIT 2005
http://www.cafit.co.uk 21 of 24

http://www.cvsnt.org/pipermail/cvsnt/2004-April/012274.html

CAfIT’s CVS/TortoiseCVS Enterprise Guide

6.1.2 “Permission” denied writing “val-tags” file
Sometimes operations such as Branch, Tag, Checkout (with a tag) and Update
Special (with a tag) fail with an error like this:

cvs [server aborted]: cannot write D:/CVSRepository/Bonds/CVSROOT/val-tags: Permission denied

Error, CVS operation failed

This is usually caused by an NTFS permissions problem, almost always due to a
kindly soul fixing the error in 6.1.1 by deleting the val-tags file. Ensure that any
users with write access to any part of the repository also have write access to the
val-tags file.

6.1.3 Invalid characters in fileattr.xml
See 3.1.6 for background information. If you end up with a well-populated
directory with an ampersand in the name, containing several files, which are being
edited by several people before this bug is uncovered, you have a major problem.

Just correcting the XML is insufficient since it will quickly get corrupted again. It is
necessary to physically rename the files in the repository. This is a messy
operation – if no-one were editing the files, you could just fix the repository and
then delete everyone’s sandbox directories and do an update. Not so if they are.

1. First, remove all read/write access to the parent directory or ensure that no
users are likely to use the contents in any way.

2. Then rename the file(s) to remove the ampersand.
3. If you have renamed any actual RCS files (,v extension) then you will also

need to open them and (carefully!) change any references in the file itself.
4. Change all the references to the badly named file in the fileattr.xml file. This

should also fix the corruption. It is also advisable to take a note of any edits
(so you remember to talk to the person concerned), and remove them.

5. Re-enable access to the folder.
6. For each CVS user, check if they had any files edited in the directories you

have changed. If so, take a copy of these files from their sandbox.
7. Once you have copies of the edited files, delete the directory in their

sandbox and do an update to get a fresh copy. This is much less effort than
editing the Entries, Entries.Extra etc.

8. If any of the edited files were binary and you are using watch mode, get the
edit back on the clean file(s).

9. Copy the edited files back in over the top of the fresh ones.
10. Repeat for all users (!)

This is a mistake you only let happen once... the kind of problem which one can
shrug about in an open source repository with hundreds of users and no watch
mode, since the clients are generally savvy enough to fix their own sandboxes if
told to do so, but in an enterprise scenario it generally falls to the support engineer
to fix both server and all clients.

6.1.4 Watch mode gets turned off
We have our suspicions that this may be happening spontaneously, but haven’t
been able to confirm anything yet. It has occurred several times due to careless
editing of fileattr.xml files when fixing error 6.1.3.

Just re-enable watch mode for the directory (cvs watch mode on) and then mark
the user(s) sandbox files as read-only.

© CAfIT 2005
http://www.cafit.co.uk 22 of 24

CAfIT’s CVS/TortoiseCVS Enterprise Guide

6.1.5 Hanging edits
This is the bane of anyone who decides to use watch mode. In many cases, after a
user has finished with a file, their edit may be left open. This completely locks out
other users from editing binary files, and is annoying for text files.

Reasons include:

• Deleting sandboxes with edits in them and checking out a new one
• Users having multiple sandboxes on the same branch and forgetting about

one of them
• Users just forgetting they have edits
• CVS bugs

The latter appears to be the most common – although as I write there claims to be
a fix in the latest version of TortoiseCVS (1.8.11).

In many cases, you can just ask the user concerned to unedit the file. If their file is
not showing as edited, they may be able to force an unedit by marking the file as
writable and choosing CVS > Unedit from the explorer menu.

If that doesn’t work, you will need to force an unedit as a CVS administrator. From
the command line, cd into a sandbox directory containing the file and type:

cvs unedit –u <username> <filename>

Where <username> is the name of the user whose edit you wish to remove.

This often doesn’t work either. In this final case the only way we have found to
remove the edit is to locate the offending fileattr.xml file in the repository and
remove the watch entry by hand:

<file name="frmMain.frm">
 <editor name="DOMAIN\username">
 <hostname>ServerAddress</hostname>
 <pathname>D:\Sandbox\MyVBProject</pathname>
 <tag>HEAD</tag>
 <time>Thu Jan 6 12:44:57 2005 GMT</time>
 </editor>
 <watched />
 <watcher name="DOMAIN\username ">
 <temp_commit />
 <temp_edit />
 <temp_unedit />
 </watcher>
</file>

Would become:

<file name="frmMain.frm">
 <watched />
</file>

© CAfIT 2005
http://www.cafit.co.uk 23 of 24

CAfIT’s CVS/TortoiseCVS Enterprise Guide

© CAfIT 2005
http://www.cafit.co.uk 24 of 24

6.1.6 Moving servers causing disconnected sandboxes
If the address and/or DNS name by which the users’ sandboxes are referencing the
CVS server changes, all the users’ sandboxes’ Root files will be pointing to the
wrong server – in the case of a large sandbox a big operation to fix.

We wrote a quick and dirty script in VB6 to fix a sandbox, the “meat” of which is
here. We are fully aware how ugly the code is!

Private Sub Command1_Click()
 'On Error GoTo stdErr

 Dim fol As Folder
 Dim fso As FileSystemObject

 Set fso = New Scripting.FileSystemObject

 Set fol = fso.GetFolder(Text1.Text)
 RecurseDir fso, fol

 RichTextBox1.Text = "DONE" & vbNewLine & RichTextBox1.Text
 Beep

 Exit Sub
stdErr:
 MsgBox "Error: " & Err.Description, _
 vbExclamation + vbOKOnly, "Error"
End Sub

Private Sub RecurseDir(ByRef fso As FileSystemObject, _

 ByRef fol As Folder)
 Dim fil As File
 Dim subFol As Folder
 Dim ts As TextStream

 If fol.Name = "CVS" Then
 For Each fil In fol.Files
 If fil.Name = "Root" Then
 Set ts = fso.OpenTextFile(fil.Path, _
 ForWriting, True)
 ts.WriteLine Text2.Text
 ts.Close
 Set ts = Nothing
 RichTextBox1.Text = "Fixed: " & fil.Path & _
 vbNewLine & RichTextBox1.Text
 DoEvents
 End If
 Next fil
 Else
 For Each subFol In fol.SubFolders
 RecurseDir fso, subFol
 Next subFol
 End If
End Sub

The program expects a TextBox called “Text1” containing the path of the folder to
fix, and writes a status log to a RichTextBox control. It requires the Microsoft
Scripting Runtime.

	Introduction
	Aim of this document
	Scope
	Intended audience

	Resources
	CVSNT
	Web links
	Documentation
	Support

	TortoiseCVS
	Web links
	Documentation
	Support

	Other
	Textpad
	WinMerge
	WinCVS

	Configuration and deployment
	Server
	File system
	Installation/updates
	Basic setup
	Anatomy of a sandbox
	Anatomy of the repository
	A major bug
	Configuring the CVS server – “CVSROOT”
	Decide policy
	NTFS permissions
	Backups

	Clients
	Installation
	Backup simplicity vs. Performance
	Designing a standard configuration
	Setting up some useful defaults
	Deploying config and defaults across multiple machines
	Explorer settings

	In use
	Safe practices
	Merging

	Maintenance
	
	The command line
	Software updates and deployment
	Permissions at branch level
	Merging

	Troubleshooting
	Q&A
	"No such tag <tag>” errors
	“Permission” denied writing “val-tags” file
	Invalid characters in fileattr.xml
	Watch mode gets turned off
	Hanging edits
	Moving servers causing disconnected sandboxes

