cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051

COLLABORATORS

TITLE :

cvsnt--Concurrent Versions System (cvsnt)
2.8.01.9051

ACTION NAME DATE SIGNATURE
WRITTEN BY February 4, 2025
REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 iii

Contents

1 Overview 1
1.1 Whatis CVS? . . . e 1
1.2 Whatis CVS nOt? e 2
1.3 Asample Session e e e e 3

1.3.1 Getting the SOUICE o i e e e e e e e e e e 3
1.3.2 Committing your changes 3
1.33 Cleaning up o o v v i e e 4
1.3.4 Viewing differences L e e e e e 4

2 The Repository 6
2.1 Telling CVS where your repository iS v v v v v v v e i e e e e e e e e e e e e e e 6
2.2 How datais stored in the repository e e e e e 7

2.2.1 Where files are stored within the repository L 7
2.2.2 File permissions o e e e e 8
223 Theattic e e e e e 9
2.24 The CVSdirectory inthe repository e 9
2.2.5 CVSlocksinthe repository o i e 9
2.2.6 How files are stored in the CVSROOT directory i ittt 10
2.3 How datais stored in the working directory L. 10
2.4 The administrative files L L e e e e 12
2.4.1 Editing administrative files L. L 13
2.5 Multiple repoSitories e e e e e e e e e e 13
2.6 Creating arepository e e e e e e 13
2.7 Backingup arepoSitOry o it e e e e e e e e e 14
2.8 MoOVING aTePOSItOTY v v o o e 14
2.9 Remote reposSitories v v v i i e e e e e e e e e e e e e e e e 14
2.9.1 Server reqUIrCIMENtS« u e e e e e e e e e e e e e e e e 15
2.9.2 Connecting withssh e 15
2.9.3 Using 3rd party clients via the extnt Wrapper o o v it e e e e 16

2.9.4 Direct connection with password authentication 00000 oL 16

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 iv
2.9.4.1 Setting up the server for Authentication L 17

2942 CVSpasswdfile e 17

2.9.4.3 Using the client with password authentication 18

2.9.44 Security considerations with password authentication 19

2.9.5 Direct connection with GSSAPI L 19

2.9.6 Connecting withfork L 19

2.9.7 Using repository aliases e e e 20

3 Security 21
3.1 HOWUIOSEtUP SECUTILY o o v v o e 21
32 Howtoaddanddelete users e e e 21

3.3 Setting permissions for files and directorieso Lo e 21

3.4 Groups of users can be assigned permiSsions oL Lo e e 22

3.5 Running CVSNT asanonprivileged user. e 23

3.6 Running withinachrootjail e 23

3.7 Setting and changing passwords e e e e e e e 23

3.8 Repository adminiStrators L e e e e e e e e e e e e e e 23

3.9 Read-only répoSitory aCCESS . . . v v v v v v i e e e e e e e e e e e e e e e e e e 23
3.10 Temporary directories for the server e 24
3.11 The CVSNT lockserver o e e e e e e e s e e e 24

4 Starting a project with CVS 25
4.1 Settingupthefiles e e e e e e 25
4.1.1 Creating a directory tree from anumber of files 25

4.1.2 Creating Files From Other Version Control Systems 26

4.1.3 Creating a directory tree from scratch 26

4.2 Definingthemodule L 26

5 Revisions 28
5.1 ReviSIOn NUMDETS o ottt e e e e e e e e 28

5.2 Versions, revisions and releases e 28

5.3 ASSIgNING TEVISIONS ottt e e e e e e e e e e e 28

5.4 Tags-Symbolic TeVISIONS v v v i e e e e e e e e e e e e e e 29

5.5 Specifying what to tag from the working directory L e 30

5.6 Specifying what to tag by date or revisSion e e e e e e e 31

5.7 Deleting, moving, and renaming tagso e e e e e e e e e e e e e 31

5.8 Tagging and adding and removing files oL 32

59 ALAStags 32
5.10 Commit identifiers L. e e e 32
S5.01 Sticky tags L L e 32

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 v
6 Branching and merging 34
6.1 Whatbranches are good for L 34
6.2 Creatingabranch e e e e 34

6.3 Accessingbranches e 35

6.4 Branches and reviSions e e e 36

6.5 Magicbranchnumbers e e e e e e e e 36

6.6 Merging anentirebranch L L L e 37

6.7 Merging from a branch several times L 38

6.8 Merging differences between any two revisionso o ol e 38

6.9 Mergingcanaddorremove files L. e e e e 39
6.10 Merging and keywords L L. 39

7 Recursive behavior 40
8 Adding, removing, and renaming files and directories 41
8.1 Adding filestoa directory L e e e e e e e e e 41

8.2 Removingfiles 42

8.3 Removing direCtories e e e e e e 43

8.4 Moving and renaming files L L e e e e e e e 43
8.4.1 The Normal way to Rename e 44

84.2 TheoldwaytoRename e 44

8.4.3 Moving the history file L 44

8.4.4 Copyingthe history file. e e 45

8.5 Moving and renaming directories L. L e 45

9 History browsing 46
0.1 LOogmeSSages e e e e 46

9.2 Thehistory database e e 46

9.3 User-defined logging o e e e e e 46
9.3.1 Thetaginfofile e 46

9.4 Annotate commandol e e e e 47

10 Handling binary files 48
10.1 Theissues with binary files e 48
10.2 How to store binary files e 48

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 vi
11 Multiple developers 50
111 File status e e e e e 50
11.2 Bringingafileuptodate e e e e 51
11.3 Conflicts example e 51
11.4 Informing others about commits e e 53
11.5 Several developers simultaneously attemptingtorun CVS L 53
11.6 Mechanisms to track who is editing files e 54
11.6.1 Setting up cooperative edits e e 54

11.6.2 Telling CVS to notify you when someone modifiesafile 55

11.6.3 How to edit a file which is being watched 56

11.6.4 Information about who is watching and editing 56

11.6.5 Using watches with old versions of CVS 57

11.7 Choosing between reserved or unreserved checkouts Lo oL 57

12 Revision management 58
12.1 Whentocommit? L. e e e e e e 58

13 Keyword substitution 59
13.1 Keyword List o o e e e e e e e e e 59
13.2 Using keywords e 60
13.3 Avoiding substitution L L. e e e 60
13.4 Substitution modes L L e e e e 60
13.5 SLogS . . . o e 62

14 Tracking third-party sources 63
14.1 TImporting for the firsttime e e e e e e 63
14.2 Updating with the import command Lo e 63
14.3 Reverting to the latest vendorrelease 64
14.4 How to handle binary files with cvsimport e e e 64
14.5 How to handle keyword substitution with cvs import oL o 64
14.6 Multiple vendor branches L 64

15 How your build system interacts with CVS 66
16 Special Files 67
A Guide to CVS commands 68
A.l1 Overall structure of CVS commands e e 68
A2 CVS’sexitstatus oo v it e e e e e e e e e e e 68
A.3 Default options and the ~/.cvsrc and CVSROOT/cvsrcfiles 69
A4 Global options e e e e e e e e e 69

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 vii

A5 Commoncommand OPHONS v ot v it e e e e e e e e e e 71
A.6 add--Add files tOTEPOSILOTY o o v i e e e e e e e e e e e e e e e 72
A.6.1 addoptions e e 73

A7 admin--Administration Lo e e e e e 73
A7.1 admin Options e e e e e 73

A.8 annotate--find out who made changestothefiles. 74
A8.1 annotate OptionS e e e e e e e e 75

A.9 chacl--Change access control ListS e e e e e e 75
A9.1 chacloptions e 75

A.10 checkout--Check out sources forediting e e e 75
A.10.1 checkout options L e e e e e e 76
A.10.2 checkoutexamples e e e e e e 77

A.11 chown--Change directory OWNEr o v vttt ittt e e e e e e e e e e e 78
ATLLT chown Options o . e e e e e e e e e e e e e 78

A.12 commit--Check files into the repository L. e 78
A12.1 cOMMItOPLONS .« . v . v v v v e 78

A 122 commitexamples L L e e e e e e e e 79
A.12.2.1 Committingtoabranch 79

A.12.2.2 Creating the branch afterediting 80

A.13 diff--Show differences between revisions L 80
A13.1 diffoptions oL e 80

A 13.2 diffexamples e e e e e e 81
A.14 edit--Mark files forediting L. e 82
A L4 1 editOptions e e e e e e e e e e e e e e e 82

A.15 editors--Find out who is editing afile 83
ALL5.1 editors OPHONS o o ot e e e e e e e e e e e e e e e e e e 83

A.16 export--Export sources from CVS, similar tocheckout, 83
AL6.1 eXPOrt OPLONS . . . v o v v ot e 84

A.17 history--Show status of filesand userso 84
A Q7.1 RiStOry OPtioNS v v o v e 84

A.18 import--Import sources into CVS, using vendor branches o000 0oL 86
ALL8.1 IMPOrt OPLioNS v v o o e 86
A18.2 import outputo L e 87

A 183 importexamples L. e e e e e e e e e e e e e e e e 87

A.19 init--Initialise a new repository L. L e 87
Ad9.1 INItOPLONS v o o e e e e e e e e e e e e e e e e e 87

A.20 info--Get information about the client and server Lo 88
A20.1 InfoOptioNs e e e e e e e e e 89

A.21 log--Print out log information for files L 89

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 viii

A21.1 1ogoptions e e e 89
A21.2 logexamples e e e e e e e e e 91
A.22 login--Cache a client password locally 91
A22.1 1ogin options e e e e e e e e e e 91
A.23 logout--Remove the cached entry fora password 91
A.23.1 1ogout OPLiONS L e e e e e e e e e e e e e e e 91
A.24 Is--list modules, files and directories in the repository L. 91
A24.1 ISOPLIONS o ot e e e e e e e e e e e e e 92
A.25 Isacl--Show file/directory permissions i i e e e e e e 92
A25.1 Isacl OptionS e e e e e e e e e 92
A.26 rlsacl--Show remote file/directory permissions 93
A.27 passwd--Modify a user’s password Or Create @ USET v v v v v v v v et e e e e e e e e e e 93
A27.1 passwd OPtIONS e e e e 93
A.28 rannotate--Show who made changes toremote files 93
A.29 rchacl--Change remote access control lists L 94
A.30 rchown--Change owner of aremote directory i e e e 94
A.31 rdiff--’patch’ format diffs between releases 94
AL rdiffoptions L e e e e 94
A31.2 rdiffexamples L 95
A.32 release--Indicate that a Module isno longerinuse e 95
A32.1 release OPtiONS e e e e e e 96
A32.2 release OutpUL e e e e e e e e e e e e e e 96
A32.3 release examples e e e e 96
A.33 remove--Remove files from the working directory e 96
A33.1 1eMOVE OPLONS o v o v v e e e e e e e e e e e e e e e e e 96
A.34 rename--Rename files in the repository e e 97
A.35 rlog--Return log history of remote file L 97
A.36 rtag--Mark a single revision over multiple files L 97
A.37 status--Display the state of a file in the working directory oo 98
A37.1 Status OPHONS o v o e 98
A38tag--Create atagorbranch 98
A38.1 tag OPLioNS o e e e e e e e e e e e e e e e e 99
A.39 unedit--Mark edit as finished without committing oL 0oL 99
A39.1 unedit OPtioNS L e e e e e e e e e e e e 100
A.40 update--Bring work tree in sync withrepository oL e 100
A40.1 update OptionS e e e e e e e e e e e e e e e 100
A40.2 update outputol e 102
A.41 version--Display client and Server Versions. ottt e e e e e e e e e e 102

AALTL version OptionsS L. e e e e e e e e e e e e 102

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 ix

A.42 watch--Watch for changesinafile 103
AA2.1 watch options L e e e e e e e e 103

A.43 watchers--list watched files L 103
A43.1 watchers options e e 103

A44 xdiff--External diff Lo e 103
Ad4] xdiff optionso e 104

B Reference manual for Administrative files 105
B.1 Themodulesfile 105
B.1.1 Allasmodules e 105
B.1.2 Regularmodules L 106
B.1.3 Ampersand modules 106
B.1.4 Excluding directories e e e e e e e e e e 107
B.1.5 Moduleoptions e 107
B.1.6 How the modules file "program options" programs are run« v v v b e e 108

B.2 Themodules2 file e 108
B.2.1 How the modules?2 file differs from the modulesfile 108
B.2.2 Modules2 syntax e e e e e e e e e e e e e e e e 108

B.3 Thecvswrappersfile e 109
B.3.1 default wrappers e 110

B.4 The commitsupportfiles e e e e e 110
B.4.1 Thecommon syntax o it e e e e e e e e 111

B.5 Triggers o e e e e 112
B.6 Commitinfo e e 113
B.7 Verifying 113
B.8 Loginfo e e e 114
B.8.1 Loginfoexample L 115
B.8.2 Loginfo default standard input format L 115

B.9 Precommand e e 116
B.10 postcommand e e 116
B.11 premodule L e e e 116
B.12 postmodule L. e e e e e e 117
B.13 postcommit e e 117
B.14 historyinfo L L e e e e e 117
B.IS resinfo . . . o 117
B.16 notify L 118
B.17 keywords e e e e e e 118
B.17.1 Storing user defined information using keywords oo Lo 119

B.18 Email notification e e e 119

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051

17

B.18.1 Configure the commit support files . .
B.18.2 Write the template
B.18.3 Configure the server
B.18.4 Keywords used in template files . . .
B.18.4.1 commitemails

B.18.4.2 tagemails

B.18.4.3 notify emails

B.19 Ignoring files via cvsignore
B.20 The checkoutlistfile.
B.21 Thehistoryfile
B.22 The shadow file
B.22.1 Keeping a checked outcopy

B.23 ActiveScript support
B.24 Expansions in administrative files
B.25 The CVSROOT/config configuration file . . .

B.26 The server configuration files

All environment variables which affect CVS

Compatibility between CVS Versions

Troubleshooting

E.1 Partial list of error messages

E.2 Trouble making a connection to a CVS server

Credits

Dealing with bugs in CVS or this manual

Index

127

129

130
130
133

134

135

136

Abstract

This is the open source reference manual for CVSNT version 2.8.01.9051.

Other documents available are:

¢ the eBook: All About CVS is included with CVS Suite in the Documentation menu [download (login required)] [about].
¢ Download Free Documentation: Windows Installation Guide for CVS Suite 2009R2 PDF.

¢ Download Free Documentation: Red Hat Enterprise Linux 7 Installation Guide for CVS Suite 2009R2 PDF.

¢ Download Free Documentation: Windows Bugzilla/CVSWERB Install Guide PDF.

¢ Download Free Documentation: Using CVS Suite with Eclipse PDF.

¢ Download Free Documentation: Using CVS Suite with IntelliJ IDEA PDF.

¢ Download Free Documentation: Using CVS Suite with SQL Navigator PDF.

¢ Download Free Documentation: Implementing Workflow and Defect Tracking Integration with CVS Suite PDF.
¢ Download Free Documentation: Implementing Promotion Models with CVS Suite PDF.

* Video Documentation: Introduction to CVS Suite Studio YouTube.

¢ Video Documentation: March Hare Software Video Channel YouTube.

* Download Release Notes: CVSNT 2.5.03 to CVS Suite 2009R2 PDF.

* Download Release Notes: CVS Suite 2008 to CVS Suite 2009R2 PDF.

http://www.march-hare.com/cvspro/?pdf=y
http://www.march-hare.com/cvsnt/features/book/en.asp?format=library
http://www.march-hare.com/cvspro/?pdf=t
http://www.march-hare.com/cvspro/?pdf=0
http://www.march-hare.com/cvspro/?pdf=w
http://www.march-hare.com/cvspro/?pdf=k
http://www.march-hare.com/cvspro/?pdf=l
http://www.march-hare.com/cvspro/?pdf=g
http://www.march-hare.com/cvspro/?pdf=v
http://www.march-hare.com/cvspro/?pdf=u
http://www.youtube.com/watch?v=IeJdCmENkVs
http://www.march-hare.com/cvspro/?pdf=x
http://www.march-hare.com/cvspro/?pdf=q
http://www.march-hare.com/cvspro/?pdf=d

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 1/142

Chapter 1

Overview

This chapter is for people who have never used cvsnt, and perhaps have never used version control software before.

If you are already familiar with cvsnt and are just trying to learn a particular feature or remember a certain command, you can
probably skip everything here.

1.1 What is CVS?

cvsnt is a version control system. Using it, you can record the history of your source files.

For example, bugs sometimes creep in when software is modified, and you might not detect the bug until a long time after you
make the modification. With cvsnt, you can easily retrieve old versions to see exactly which change caused the bug. This can
sometimes be a big help.

You could of course save every version of every file you have ever created. This would however waste an enormous amount of
disk space. cvsnt stores all the versions of a file in a single file in a clever way that only stores the differences between versions.

cvsnt also helps you if you are part of a group of people working on the same project. It is all too easy to overwrite each others’
changes unless you are extremely careful. Some editors, like gnu Emacs, try to make sure that the same file is never modified by
two people at the same time. Unfortunately, if someone is using another editor, that safeguard will not work. cvsnt solves this
problem by insulating the different developers from each other. Every developer works in his own directory, and cvsnt merges
the work when each developer is done.

cvsnt started out as a bunch of shell scripts written by Dick Grune, posted to the newsgroup comp.sources.unix in the volume 6
release of December, 1986. While no actual code from these shell scripts is present in the current version of cvsnt much of the
cvsnt conflict resolution algorithms come from them.

In April, 1989, Brian Berliner designed and coded cvs. Jeff Polk later helped Brian with the design of the cvs module and vendor
branch support.

In December, 1999 Tony Hoyle converted the unix based CVS to run under Windows Server (Windows NT). This later became
cvsnt, which developed into a project of its own.

CVSNT is now a major project with solid commercial backing, and an active support community.

You can get cvsnt in a variety of ways, including free download from the internet. For more information on downloading cvsnt
and other cvsnt topics, see:

http://www.cvsnt.org/

or

http://www.march-hare.com/cvspro/

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 2/142

For support please contact sales @march-hare.com. The mailing list is no longer used for support, but the history is maintained
online as well as the current bug database:

http
http
http
http

1.2

cvsnt

://www.cvsnt.org/pipermail/cvsnt/
://www.cvsnt.org/tt/
://www.march-hare.com/pipermail/cvsnt/
://customer.march-hare.com/webtools/bugzilla/tt.htm

What is CVS not?

can do a lot of things for you, but it does not try to be everything for everyone.

cvsnt is not a build system. Though the structure of your repository and modules file interact with your build system (e.g.

Makefiles), they are essentially independent.
cvsnt does not dictate how you build anything. It merely stores files for retrieval in a tree structure you devise.

cvsnt does not dictate how to use disk space in the checked out working directories. If you write your Makefiles or scripts
in every directory so they have to know the relative positions of everything else, you wind up requiring the entire repository
to be checked out.

If you modularize your work, and construct a build system that will share files (via links, mounts, VPATH in Makefiles,
etc.), you can arrange your disk usage however you like.

But you have to remember that any such system is a lot of work to construct and maintain. cvsnt does not address the
issues involved.

Of course, you should place the tools created to support such a build system (scripts, Makefiles, etc) under cvsnt.

Figuring out what files need to be rebuilt when something changes is, again, something to be handled outside the scope of
cvsnt. One traditional approach is to use make for building, and use some automated tool for generating the dependencies
which make uses.

See Chapter 15, for more information on doing builds in conjunction with cvsnt.

cvsnt is not a substitute for management. Your managers and project leaders are expected to talk to you frequently enough to

make certain you are aware of schedules, merge points, branch names and release dates. If they don’t, cvsnt can’t help.

cvsnt is an instrument for making sources dance to your tune. But you are the piper and the composer. No instrument plays
itself or writes its own music.

cvsnt is not a substitute for developer communication. When faced with conflicts within a single file, most developers man-

age to resolve them without too much effort. But a more general definition of "conflict" includes problems too difficult to
solve without communication between developers.

cvsnt cannot determine when simultaneous changes within a single file, or across a whole collection of files, will logically
conflict with one another. Its concept of a conflict is purely textual, arising when two changes to the same base file are near
enough to spook the merge (i.e. diff3) command.

cvsnt does not claim to help at all in figuring out non-textual or distributed conflicts in program logic.

For example: Say you change the arguments to function X defined in file A. At the same time, someone edits file B, adding
new calls to function X using the old arguments. You are outside the realm of cvsnt’s competence.

Acquire the habit of reading specs and talking to your peers.

cvsnt does not have change control (but it comes close) Change control refers to a number of things. First of all it can mean

bug-tracking, that is being able to keep a database of reported bugs and the status of each one (is it fixed? in what release?
has the bug submitter agreed that it is fixed?). For interfacing cvsnt to an external bug-tracking system, see the resinfo and
verifymsg files (Appendix B).

Another aspect of change control is keeping track of the fact that changes to several files were in fact changed together as
one logical change. If you check in several files in a single cvs commit operation, cvsnt marks that commit with a session
identifier or commitid.

mailto:sales@march-hare.com

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 3/142

cvsnt is also able to group a set of commits under a logical group by its group identifier, also known as the bugid. You can
also selectively merge changes based on this identifier.

Another aspect of change control, in some systems, is the ability to keep track of the status of each change. Some changes
have been written by a developer, others have been reviewed by a second developer, and so on. Generally, the way to do
this with cvsnt is to generate a diff (using cvs diff or diff) and email it to someone who can then apply it using the patch
utility. This is very flexible, but depends on mechanisms outside cvsnt to make sure nothing falls through the cracks.

cvsnt is not an automated testing program It is possible to link into automated testing scripts using the postcommitand trig-
ger functionality. This is outside the scope of this manual however.

cvsnt does not have a builtin process model Some systems provide ways to ensure that changes or releases go through various
steps, with various approvals as needed. Generally, one can accomplish this with cvsnt but it might be a little more work.
In some cases you’ll want to use the commitinfo, loginfo, rcsinfo, or verifymsg files, to require that certain steps be
performed before cvs will allow a checkin. Also consider whether features such as branches and tags can be used to
perform tasks such as doing work in a development tree and then merging certain changes over to a stable tree only once
they have been proven.

1.3 A sample session

As a way of introducing cvsnt, we’ll go through a typical work-session using cvsnt. The first thing to understand is that cvsnt
stores all files in a centralized repository (Chapter 2); this section assumes that a repository is set up.

Suppose you are working on a simple compiler. The source consists of a handful of C files and a Makefile. The compiler is
called te (Trivial Compiler), and the repository is set up so that there is a module called tc.

1.3.1 Getting the source

The first thing you must do is to get your own working copy of the source for te. For this, you use the checkout command:

$ cvs checkout tc

This will create a new directory called tc and populate it with the source files (the commands used may be slightly different on
Windows machines, but the output is the same).

$ cd tc
$ 1s
CVS Makefile backend.c driver.c frontend.c parser.c

The CVS directory is used internally by cvsnt (on Windows clients it is normally hidden). Normally, you should not modify or
remove any of the files in it.

You start your favorite editor, hack away at backend.c, and a couple of hours later you have added an optimization pass to the
compiler. A note to rcs, sccs, visual studio, pvcs and users of all similar scm tools: Although you can lock the files that you want
to edit in CVS, there is no need to. Chapter 11, for an explanation.

1.3.2 Committing your changes

When you have checked that the compiler is still compilable you decide to make a new version of backend.c. This will store
your new backend.c in the repository and make it available to anyone else who is using that same repository.

$ cvs commit backend.c

cvsnt starts an editor, to allow you to enter a log message. You type in "Added an optimization pass.", save the temporary file,
and exit the editor.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 4/142

The environment variable $CVSEDITOR determines which editor is started. If $§CVSEDITOR is not set, then if the environ-
ment variable $SEDITOR is set, it will be used. If both SCVSEDITOR and $EDITOR are not set then there is a default which
will vary with your operating system, for example vi for unix or notepad for Windows.

When cvsnt starts the editor, it includes a list of files which are modified. For the cvsnt client, this list is based on comparing
the modification time of the file against the modification time that the file had when it was last gotten or updated. Therefore, if
a file’s modification time has changed but its contents have not, it will show up as modified. The simplest way to handle this is
simply not to worry about it--if you proceed with the commit cvsnt will detect that the contents are not modified and treat it as
an unmodified file. The next update will clue cvsnt in to the fact that the file is unmodified, and it will reset its stored timestamp
so that the file will not show up in future editor sessions.

If you want to avoid starting an editor you can specify the log message on the command line using the -m flag instead, like this:

$ cvs commit -m "Added an optimization pass" backend.c

1.3.3 Cleaning up

Before you turn to other tasks you decide to remove your working copy of tc. One acceptable way to do that is of course

S cd
$ rm -r tc

but a better way is to use the release command (Section A.32):

S cd ..

$ cvs release -d tc

M driver.c

? tc

You have [1] altered files in this repository.

Are you sure you want to release (and delete) directory ‘tc’: n
** ‘release’ aborted by user choice.

The release command checks that all your modifications have been committed. If history logging is enabled it also makes a note
in the history file. Section B.21.

When you use the -d flag with release, it also removes your working copy. The -f tells cvsnt to also delete unknown files (such
as object files).

The release command always finishes by telling you how many modified files you have in your working copy of the sources, and
then asks you for confirmation before deleting any files or making any note in the history file.

You can decide to play it safe and answer n RET when release asks for confirmation.

1.3.4 Viewing differences

You do not remember modifying driver.c, so you want to see what has happened to that file.

S cd tc
$ cvs diff driver.c

This command runs diff to compare the version of driver.c that you checked out with your working copy. When you see the
output you remember that you added a command line option that enabled the optimization pass. You check it in, and release the
module.

$ cvs commit -m "Added an optimization pass" driver.c
Checking in driver.c;

/usr/local/cvsroot/tc/driver.c,vn <—-— driver.c
new revision: 1.2; previous revision: 1.1
done

$ cd

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 5/142

$ cvs release -d tc

? tc

You have [0] altered files in this repository.

Are you sure you want to release (and delete) directory ‘tc’: y

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 6/142

Chapter 2

The Repository

The cvsnt repository stores a complete copy of all the files and directories which are under version control.

Normally, you never access any of the files in the repository directly. Instead, you use cvsnt commands to get your own copy of
the files into a working directory, and then work on that copy. When you’ve finished a set of changes, you check (or commit)
them back into the repository. The repository then contains the changes which you have made, as well as recording exactly what
you changed, when you changed it, and other such information. Note that the repository is not a subdirectory of the working
directory, or vice versa; they should be in separate locations.

cvsnt can access a repository by a variety of means. It might be on the local computer, or it might be on a computer across the room
or across the world. To distinguish various ways to access a repository, the repository name can start with an access method. For
example, the access method :local: means to access a repository directory, so the repository :local:/usr/local/cvsroot means that
the repository is in /usr/local/cvsroot on the computer running cvsnt. For information on other access methods, see Section 2.9.

If the access method is omitted, then if the repository does not contain @, then :local: is assumed. If it does contain @ then
:ext: is assumed. For example, if you have a local repository in /usr/local/cvsroot, you can use /usr/local/cvsroot instead of
:local:/usr/local/cvsroot.

The repository is split in two parts. SCVSROOT/CVSROOT contains administrative files for cvsnt. The other directories
contain the actual user-defined modules.

2.1 Telling CVS where your repository is

There are several ways to tell cvsnt where to find the repository. You can name the repository on the command line explicitly,
with the -d (for "directory") option:

cvs —-d /usr/local/cvsroot checkout yoyodyne/tc

Or you can set the SCVSROOT environment variable to an absolute path to the root of the repository, /usr/local/cvsroot in this
example. To set SCVSROOT, csh and tesh users should have this line in their .cshre or .teshre files:

setenv CVSROOT /usr/local/cvsroot

sh and bash users should instead have these lines in their .profile or .bashrc:

CVSROOT=/usr/local/cvsroot
export CVSROOT

It is common for cvs frontends to set this up automatically. On most frontends there will be a dialog box which prompts you for
the CVSROOT when it is first configured.

A repository specified with -d will override the $CVSROOT environment variable. Once you’ve checked a working copy out
from the repository, it will remember where its repository is (the information is recorded in the CVS/Root file in the working

copy).

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 7/142

The -d option and the CVS/Root file both override the $CVSROOT environment variable. If -d option differs from CVS/Root,
the former is used. Of course, for proper operation they should be two ways of referring to the same repository.

2.2 How data is stored in the repository

For most purposes it isn’t important how cvsnt stores information in the repository. In fact, the format has changed in the past,
and is likely to change in the future. Since in almost all cases one accesses the repository via cvsnt commands, such changes
need not be disruptive.

However, in some cases it may be necessary to understand how cvsnt stores data in the repository, for example you might need
to track down cvsnt locks (Section 11.5) or you might need to deal with the file permissions appropriate for the repository.

2.2.1 Where files are stored within the repository

The overall structure of the repository is a directory tree corresponding to the directories in the working directory. For example,
supposing the repository is in

/usr/local/cvsroot

here is a possible directory tree (showing only the directories):

/usr
|
+--1local

+-—cvsroot

| +-—CVSROOT
| (administrative files)

+-—gnu
\ |
+——diff
| (source code to gnu diff)
|
+--rcs

| (source code to rcs)

\

\

\

\

\

\ |
| +-—cvsnt

| (source code to cvsnt)
\

+-—yoyodyne

|

T==EC

| \

+--man

+--testing

|
|
|
|
+-—— (other Yoyodyne software)

With the directories are history files for each file under version control. The name of the history file is the name of the corre-
sponding file with ,v appended to the end. Here is what the repository for the yoyodyne/tc directory might look like:

SCVSROOT
|
+-—yoyodyne
| |
| T==EE

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 8/142

| \
+--Makefile,v
+--backend.c,v
+-——driver.c,v
+-—-frontend.c,v
+--parser.c,v
+—-—man

\ \

| F==EC o d,; V¥
\

+-—testing

\
+-——-testpgm.t, v
+-—-test2.t,v

The history files contain, among other things, enough information to recreate any revision of the file, a log of all commit messages
and the user-name of the person who committed the revision. The history files are known as rcs files, because the first program
to store files in that format was a version control system known as rcs. For a full description of the file format, see the man page
[?], distributed with rcs, or the file doc/resfile in the cvsnt source distribution. This file format has become very common--many
systems other than cvsnt or rcs can at least import history files in this format.

The rcs files used in cvs and cvsnt differ in a few ways from the standard format. The biggest difference in cvs is magic branches;
for more information see Section 6.5. Also in cvsnt the valid tag names are a subset of what rcs accepts; for cvsnt’s rules see
Section 5.4. cvsnt also brings binary diffs and mergepoints to the table. Future versions of cvsnt may introduce still further
changes, so it is unwise to try to read (or write to) the repository with rcs. cvsnt provides some rcs ’lookalike’ comands for
accessing the repository files.

2.2.2 File permissions

All ,v files are created read-only, and you should not change the permission of those files. The directories inside the repository
should be writable by the persons that have permission to modify the files in each directory. On Unix, this normally means that
you must create a group (see group(5)) consisting of the persons that are to edit the files in a project, and set up the repository so
that it is that group that owns the directory. On Windows, you must allow write access to the files for each user or group that is
accessing the repository. If impersonation is not enabled, then the repository is always accessed as SYSTEM.

This means that you can only control access to files on a per-directory basis using the operating system (however see the chacl
and Isacl commands for a way to do this withing cvsnt itself).

Note that users must also have write access to check out files, because cvsnt needs to create lock files (Section 11.5).

Also note that users must have write access to the CVSROQT/val-tags file. cvsnt uses it to keep track of what tags are valid tag
names (it is sometimes updated when tags are used, as well as when they are created).

Normally each rcs file will be owned by the user who last checked it in. This has little significance; what really matters is who
owns the directories. See also Section 3.5.

cvsnt tries to set up reasonable file permissions for new directories that are added inside the tree, but you must fix the permis-
sions manually when a new directory should have different permissions than its parent directory. If you set the CVSUMASK
environment variable that will control the file permissions which cvsnt uses in creating directories and/or files in the repository.
CVSUMASK does not affect the file permissions in the working directory; such files have the permissions which are typical
for newly created files, except that sometimes cvsnt creates them read-only (see the sections on watches, Section 11.6.1; -r,
Section A.4; or CVSREAD, Appendix C).

Note that using the client/server cvsnt (Section 2.9), there is no good way to set CVSUMASK; the setting on the client machine
has no effect. If you are connecting with ssh, you can set CVSUMASK in .bashrc or .cshre, as described in the documentation
for your operating system. This behavior might change in future versions of cvsnt; do not rely on the setting of CVSUMASK on
the client having no effect.

Under Windows, because of the way directory permissions work on that platform, setting CVSUMASK will have no effect.

Using remote repositories, you will generally need stricter permissions on the cvsroot directory and directories above it in the
tree; see Section 2.9.4.4.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 9/142

Some operating systems have features which allow a particular program to run with the ability to perform operations which the
caller of the program could not. For example, the set user ID (setuid) or set group ID (setgid) features of unix or the installed
image feature of VMS. cvsnt was not written to use such features and therefore attempting to install cvsnt in this fashion will
provide protection against only accidental lapses; anyone who is trying to circumvent the measure will be able to do so, and
depending on how you have set it up may gain access to more than just cvsnt. You may wish to instead consider pserver or
sserver. They shares some of the same attributes, in terms of possibly providing a false sense of security or opening security
holes wider than the ones you are trying to fix, so read the documentation on pserver security carefully if you are considering
this option (Section 2.9.4.4).

2.2.3 The attic

The attic was used in older versions of cvs to store files in the branches. Its use has been depreciated since cvsnt 2.0.15, and
cvsnt no longer stores files in the Attic. It will, however, read files that have been stored in the Attic by previous versions of cvs.

instead. It should not matter from a user point of view whether a file is in the attic; cvsnt keeps track of this and looks in the attic
when it needs to. But in case you want to know, the rule was that the rcs file is stored in the attic if and only if the head revision
on the trunk has state dead. A dead state means that file has been removed, or never added, for that revision. For example, if
you add a file on a branch, it will have a trunk revision in dead state, and a branch revision in a non-dead state.

2.2.4 The CVS directory in the repository

The CVS directory in each repository directory contains information such as file attributes (in a file called CVS/fileattr.xml. In
the future additional files may be added to this directory, so implementations should silently ignore additional files.

The format of the fileattr.xml file is a series of XML entries describing the edit state of each file, and any access permissions that
are current.

2.2.5 CVS locks in the repository

For an introduction to cvsnt locks focusing on user-visible behavior, see Section 11.5. The following section is aimed at people
who are writing tools which want to access a cvsnt repository without interfering with other tools acessing the same repository. If
you find yourself confused by concepts described here, like read lock, write lock, and deadlock, you might consult the literature
on operating systems or databases.

cvsnt now uses the LockServer to handle lock concurrency in a dynamic way (see Section 3.11. This following section refers to
the obsolete filesysem lock method, which may still be in use on some sites.

Any file in the repository with a name starting with #cvs.rfl. is a read lock. Any file in the repository with a name starting with
#evs.wil is a write lock. Old versions of cvsnt (before cvsnt 1.5) also created files with names starting with #cvs.tfl, but they are
not discussed here. The directory #cvs.lock serves as a master lock. That is, one must obtain this lock first before creating any
of the other locks.

To obtain a readlock, first create the #cvs.lock directory. This operation must be atomic (which should be true for creating a
directory under most operating systems). If it fails because the directory already existed, wait for a while and try again. After
obtaining the #cvs.lock lock, create a file whose name is #cvs.rfl. followed by information of your choice (for example, hostname
and process identification number). Then remove the #cvs.lock directory to release the master lock. Then proceed with reading
the repository. When you are done, remove the #cvs.rfl file to release the read lock.

To obtain a writelock, first create the #cvs.lock directory, as with a readlock. Then check that there are no files whose names
start with #cvs.rfl.. If there are, remove #cvs.lock, wait for a while, and try again. If there are no readers, then create a file whose
name is #cvs.wil followed by information of your choice (for example, hostname and process identification number). Hang on to
the #cvs.lock lock. Proceed with writing the repository. When you are done, first remove the #cvs.wfl file and then the #cvs.lock
directory. Note that unlike the #cvs.rfl file, the #cvs.wfl file is just informational; it has no effect on the locking operation beyond
what is provided by holding on to the #cvs.lock lock itself.

Note that each lock (writelock or readlock) only locks a single directory in the repository, including Attic and CVS but not
including subdirectories which represent other directories under version control. To lock an entire tree, you need to lock each

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 10/ 142

directory (note that if you fail to obtain any lock you need, you must release the whole tree before waiting and trying again, to
avoid deadlocks).

Note also that cvsnt expects writelocks to control access to individual foo,v files. rcs has a scheme where the ,foo, file
serves as a lock, but cvsnt does not implement it and so taking out a cvsnt writelock is recommended. See the comments at
rcs_internal_lockfile in the cvsnt source code for further discussion/rationale.

2.2.6 How files are stored in the CVSROOT directory

The $CVSROOT/CVSROOT directory contains the various administrative files. In some ways this directory is just like any
other directory in the repository; it contains rcs files whose names end in ,v, and many of the cvsnt commands operate on it the
same way. However, there are a few differences.

For each administrative file, in addition to the rcs file, there is also a checked out copy of the file. For example, there is an rcs file
loginfo,v and a file loginfo which contains the latest revision contained in loginfo,v. When you check in an administrative file,
cvsnt should print

cvs commit: Rebuilding administrative file database

and update the checked out copy in $CVSROOT/CVSROOT. If it does not, there is something wrong (Appendix G). To add
your own files to the files to be updated in this fashion, you can add them to the checkoutlist administrative file (Section B.20).

By default, the modules file behaves as described above. If the modules file is very large, storing it as a flat text file may make
looking up modules slow (I’'m not sure whether this is as much of a concern now as when cvsnt first evolved this feature; I haven’t
seen benchmarks). Therefore, by making appropriate edits to the cvsnt source code one can store the modules file in a database
which implements the ndbm interface, such as Berkeley db or GDBM. If this option is in use, then the modules database will be
stored in the files modules.db, modules.pag, and/or modules.dir.

For information on the meaning of the various administrative files, see Appendix B.

2.3 How data is stored in the working directory

While we are discussing cvsnt internals which may become visible from time to time, we might as well talk about what cvsnt
puts in the CVS directories in the working directories. As with the repository, cvsnt handles this information and one can usually
access it via cvsnt commands. But in some cases it may be useful to look at it, and other programs, such as the jCVS graphical
user interface or the VC package for emacs, may need to look at it. Such programs should follow the recommendations in this
section if they hope to be able to work with other programs which use those files, including future versions of the programs just
mentioned and the command-line cvsnt client.

The CVS directory contains several files. Programs which are reading this directory should silently ignore files which are in the
directory but which are not documented here, to allow for future expansion.

The files are stored according to the text file convention for the system in question. This means that working directories are not
portable between systems with differing conventions for storing text files. This is intentional, on the theory that the files being
managed by cvsnt probably will not be portable between such systems either.

Root This file contains the current cvsnt root, as described in Section 2.1.

Repository This file contains the directory within the repository which the current directory corresponds with. It can be either
an absolute pathname or a relative pathname; cvsnt has had the ability to read either format since at least version 1.3 or so.
The relative pathname is relative to the root, and is the more sensible approach, but the absolute pathname is quite common
and implementations should accept either. For example, after the command

cvs —-d :local:/usr/local/cvsroot checkout yoyodyne/tc

Root will contain

:local:/usr/local/cvsroot

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 11/142

and Repository will contain either

/usr/local/cvsroot/yoyodyne/tc

or

yoyodyne/tc

If the particular working directory does not correspond to a directory in the repository, then Repository should contain
CVSROOT/Emptydir.

Entries This file lists the files and directories in the working directory. The first character of each line indicates what sort of line
it is. If the character is unrecognized, programs reading the file should silently skip that line, to allow for future expansion.

If the first character is /, then the format is:

/name/revision/timestamp[+conflict]/options/tagdate

where [and] are not part of the entry, but instead indicate that the + and conflict marker are optional. name is the name
of the file within the directory. revision is the revision that the file in the working derives from, or 0 for an added file,
or - followed by a revision for a removed file. t imestamp is the timestamp of the file at the time that cvsnt created it;
if the timestamp differs with the actual modification time of the file it means the file has been modified. It is stored in
the format used by the ISO C asctime() function (for example, Sun Apr 7 01:29:26 1996). One may write a string which
is not in that format, for example, Result of merge, to indicate that the file should always be considered to be modified.
This is not a special case; to see whether a file is modified a program should take the timestamp of the file and simply
do a string compare with t imestamp. If there was a conflict, conflict can be set to the modification time of the file
after the file has been written with conflict markers (Section 11.3). Thus if conflict is subsequently the same as the
actual modification time of the file it means that the user has obviously not resolved the conflict. opt ions contains sticky
options (for example -kb for a binary file). tagdate contains T followed by a tag name, or D for a date, followed by
a sticky tag or date. Note that if t imestamp contains a pair of timestamps separated by a space, rather than a single
timestamp, you are dealing with a version of cvsnt earlier than cvsnt 1.5 (not documented here).

The timezone on the timestamp in CVS/Entries (local or universal) should be the same as the operating system stores for
the timestamp of the file itself. For example, on Unix the file’s timestamp is in universal time (UT), so the timestamp in
CVS/Entries should be too. On vms, the file’s timestamp is in local time, so cvsnt on vms should use local time. This rule
is so that files do not appear to be modified merely because the timezone changed (for example, to or from summer time).

If the first character of a line in Entries is D, then it indicates a subdirectory. D on a line all by itself indicates that
the program which wrote the Entries file does record subdirectories (therefore, if there is such a line and no other lines
beginning with D, one knows there are no subdirectories). Otherwise, the line looks like:

D/name/fillerl/filler2/filler3/filler4

where name is the name of the subdirectory, and all the £i11ler fields should be silently ignored, for future expansion.
Programs which modify Entries files should preserve these fields.

The lines in the Entries file can be in any order.

Entries.Log This file does not record any information beyond that in Entries, but it does provide a way to update the information
without having to rewrite the entire Entries file, including the ability to preserve the information even if the program writing
Entries and Entries.Log abruptly aborts. Programs which are reading the Entries file should also check for Entries.Log.
If the latter exists, they should read Entries and then apply the changes mentioned in Entries.Log. After applying the
changes, the recommended practice is to rewrite Entries and then delete Entries.Log. The format of a line in Entries.Log
is a single character command followed by a space followed by a line in the format specified for a line in Entries. The
single character command is A to indicate that the entry is being added, R to indicate that the entry is being removed, or
any other character to indicate that the entire line in Entries.Log should be silently ignored (for future expansion). If the
second character of the line in Entries.Log is not a space, then it was written by an older version of cvsnt (not documented
here).

Programs which are writing rather than reading can safely ignore Entries.Log if they so choose.

Entries.Backup This is a temporary file. Recommended usage is to write a new entries file to Entries.Backup, and then to
rename it (atomically, where possible) to Entries.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 12/ 142

Entries.Old This is the previous generation of the ’Entries’ file. If your program modifies the ’Entries’ file rename the existing
file to *Entries.Old’ so that frontends are able to find out what has changed.

Entries.Static The only relevant thing about this file is whether it exists or not. If it exists, then it means that only part of a
directory was gotten and cvsnt will not create additional files in that directory. To clear it, use the update command with
the -d option, which will get the additional files and remove Entries.Static.

Entries.Extra This holds extra information about the file that was not recorded by the original CVS client. If this file exists
there is a line for each file in the Entries file. The lines can be in any order.
The format of the lines is:
/mame/saved mergepoint/fillerl/rcstime/edit_revision/edit_tag/edit_bugid/
If there are any extra fields after rcstime these should be ignored.

The second field is the saved tag from an update -j, which is recorded the next time the file is committed to store the
mergepoint data.

The third field is unused (and reserved) at present.

The fourth field is the last checkin time of the file, expressed as a time_t. Do not assume that this value will fit into a 32bit
variable, as this will cause problems in 2038.

The fifth, sixth and seventh fields define the revision, tag/branch and bug identifier of the last cvs edit that was invoked by
the client.

Entries.Extra.Old This is the previous generation of the "Entries.Extra’ file. If your program modifies the ’Entries’ file rename
the existing file to *Entries.Extra.Old’ so that frontends are able to find out what has changed.

Rename This file contains information about any renames that have not yet been committed to the repository. The file is stored
as pairs of filenames within the directory, with a blank meaning removed’.

Tag This file contains per-directory sticky tags or dates. The first character is T for a branch tag, N for a non-branch tag, or D
for a date, or another character to mean the file should be silently ignored, for future expansion. This character is followed
by the tag or date. Note that per-directory sticky tags or dates are used for things like applying to files which are newly
added; they might not be the same as the sticky tags or dates on individual files. For general information on sticky tags and
dates, see Section 5.11.

CVSNT also stores the directory revision in this file, as a numeric tag.

Notify This file stores notifications (for example, for edit or unedit) which have not yet been sent to the server. Its format is not
yet documented here.

Notify.tmp This file is to Notify as Entries.Backup is to Entries. That is, to write Notify, first write the new contents to
Notify.tmp and then (atomically where possible), rename it to Notify.

Base If watches are in use, then an edit command stores the original copy of the file in the Base directory. This allows the
unedit command to operate even if it is unable to communicate with the server.

Template This file contains the template specified by the resinfo file (Section B.15). It is only used by the client; the non-
client/server cvsnt consults resinfo directly.

2.4 The administrative files

The directory $CVSROOT/CVSROOT contains some administrative files. Appendix B, for a complete description. You can
use cvsnt without any of these files, but some commands work better when at least the modules file is properly set up.

The most important of these files is the modules file. It defines all modules in the repository. This is a sample modules file.

CVSROOT CVSROOT

modules CVSROOT modules
cvs gnu/cvs

rcs gnu/rcs

diff gnu/diff

tc yoyodyne/tc

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 13/ 142

The modules file is line oriented. In its simplest form each line contains the name of the module, whitespace, and the directory
where the module resides. The directory is a path relative to SCVSROOT. The last four lines in the example above are examples
of such lines.

The line that defines the module called modules uses features that are not explained here. Section B.1, for a full explanation of
all the available features.

In many cases the modules2 file may be more suitable for defining modules. See Section B.2 for details.

2.4.1 Editing administrative files

You edit the administrative files in the same way that you would edit any other module. Use cvs checkout CVSROOT to get a
working copy, edit it, and commit your changes in the normal way.

It is possible to commit an erroneous administrative file. You can often fix the error and check in a new revision, but sometimes
a particularly bad error in the administrative file makes it impossible to commit new revisions.

2.5 Multiple repositories

In some situations it is a good idea to have more than one repository, for instance if you have two development groups that
work on separate projects without sharing any code. All you have to do to have several repositories is to specify the appropriate
repository, using the CVSROOT environment variable, the -d option to cvsnt, or (once you have checked out a working directory)
by simply allowing cvsnt to use the repository that was used to check out the working directory (Section 2.1).

The big advantage of having multiple repositories is that they can reside on different servers. With CVS version 1.10, a single
command cannot recurse into directories from different repositories. With development versions of cvsnt, you can check out
code from multiple servers into your working directory. cvsnt will recurse and handle all the details of making connections to as
many server machines as necessary to perform the requested command. Here is an example of how to set up a working directory:

cvs -d serverl:/cvs co dirl
cd dirl

cvs —-d server2:/root co sdir
cvs update

The cvs co commands set up the working directory, and then the cvs update command will contact server2, to update the dirl/sdir
subdirectory, and serverl, to update everything else.

2.6 Creating a repository

To set up a cvsnt repository, first choose the machine and disk on which you want to store the revision history of the source files.
CPU and memory requirements are modest, so most machines should be adequate. For details see Section 2.9.1.

To estimate disk space requirements, if you are importing rcs files from another system, the size of those files is the approximate
initial size of your repository, or if you are starting without any version history, a rule of thumb is to allow for the server
approximately three times the size of the code to be under cvsnt for the repository (you will eventually outgrow this, but not
for a while). On the machines on which the developers will be working, you’ll want disk space for approximately one working
directory for each developer (either the entire tree or a portion of it, depending on what each developer uses).

The repository should be accessible (directly or via a networked file system) from all machines which want to use cvsnt in server
or local mode; the client machines need not have any access to it other than via the cvsnt protocol. It is not possible to use cvsnt
to read from a repository which one only has read access to; cvsnt needs to be able to create lock files (Section 11.5).

To create a repository, run the cvs init command. It will set up an empty repository in the cvsnt root specified in the usual way
(Chapter 2). For example,

cvs —-d /usr/local/cvsroot init

cvs init is careful to never overwrite any existing files in the repository, so no harm is done if you run cvs init on an already
set-up repository.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 14 /142

2.7 Backing up a repository

There is nothing particularly magical about the files in the repository; for the most part it is possible to back them up just like any
other files. However, there are a few issues to consider.

The first is that to be paranoid, one should either not use cvsnt during the backup, or have the backup program lock cvsnt while
doing the backup. To not use cvsnt, you might forbid logins to machines which can access the repository, turn off your cvsnt
server, or similar mechanisms. The details would depend on your operating system and how you have cvsnt set up. To lock
cvsnt, you would create #cvs.rfl locks in each repository directory. See Section 11.5, for more on cvsnt locks. Having said all
this, if you just back up without any of these precautions, the results are unlikely to be particularly dire. Restoring from backup,
the repository might be in an inconsistent state, but this would not be particularly hard to fix manually.

When you restore a repository from backup, assuming that changes in the repository were made after the time of the backup,
working directories which were not affected by the failure may refer to revisions which no longer exist in the repository. Trying
to run cvsnt in such directories will typically produce an error message. One way to get those changes back into the repository is
as follows:

* Get a new working directory.

* Copy the files from the working directory from before the failure over to the new working directory (do not copy the contents
of the CVS directories, of course).

* Working in the new working directory, use commands such as cvs update and cvs diff to figure out what has changed, and
then when you are ready, commit the changes into the repository.

2.8 Moving a repository

Just as backing up the files in the repository is pretty much like backing up any other files, if you need to move a repository from
one place to another it is also pretty much like just moving any other collection of files.

The main thing to consider is that working directories point to the repository. The simplest way to deal with a moved repository
is to just get a fresh working directory after the move. Of course, you’ll want to make sure that the old working directory had
been checked in before the move, or you figured out some other way to make sure that you don’t lose any changes. If you really
do want to reuse the existing working directory, it should be possible with manual surgery on the CVS/Repository files. You
can see Section 2.3, for information on the CVS/Repository and CVS/Root files, but unless you are sure you want to bother, it
probably isn’t worth it.

2.9 Remote repositories

Your working copy of the sources can be on a different machine than the repository. Using cvsnt in this manner is known as
client/server operation. You run cvsnt on a machine which can mount your working directory, known as the client, and tell it to
communicate to a machine which can mount the repository, known as the server. Generally, using a remote repository is just like
using a local one, except that the format of the repository name is:

:method[;keywords...]:[[user] [:password]@]hostname[: [port]][:]/path/to/repository

Specifying a password in the repository name is not recommended during checkout, since this will cause cvsnt to store a cleartext
copy of the password in each created directory. cvs login first instead (Section 2.9.4.3).

With most protocols the username is optional. Your current login name will be used in this case. Also, a special username of .’
(dot) can be used, and means the same as not specifying a username. This can be used for frontends built for older cvs versions
which required a username to be specified.

The details of exactly what needs to be set up depend on how you are connecting to the server.

If method is not specified, and the repository name contains :, then the default is ext or server, depending on your platform;
both are described in Section 2.9.2.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 15/ 142

2.9.1 Server requirements

The quick answer to what sort of machine is suitable as a server is that requirements are modest--a server with 32M of memory
or even less can handle a fairly large source tree with a fair amount of activity.

The real answer, of course, is more complicated. Estimating the known areas of large memory consumption should be sufficient
to estimate memory requirements. There are two such areas documented here; other memory consumption should be small by
comparison (if you find that is not the case, let us know, as described in Appendix G, so we can update this documentation).

The first area of big memory consumption is large checkouts, when using the cvsnt server. The server consists of two processes
for each client that it is serving. Memory consumption on the child process should remain fairly small. Memory consumption on
the parent process, particularly if the network connection to the client is slow, can be expected to grow to slightly more than the
size of the sources in a single directory, or two megabytes, whichever is larger.

Multiplying the size of each cvsnt server by the number of servers which you expect to have active at one time should give an
idea of memory requirements for the server. For the most part, the memory consumed by the parent process probably can be
swap space rather than physical memory.

The second area of large memory consumption is diff, when checking in large files. This is required even for binary files. The
rule of thumb is to allow about ten times the size of the largest file you will want to check in, although five times may be adequate.
For example, if you want to check in a file which is 10 megabytes, you should have 100 megabytes of memory on the machine
doing the checkin (the server machine for client/server, or the machine running cvsnt for non-client/server). This can be swap
space rather than physical memory. Because the memory is only required briefly, there is no particular need to allow memory for
more than one such checkin at a time.

Resource consumption for the client is even more modest--any machine with enough capacity to run the operating system in
question should have little trouble.

For information on disk space requirements, see Section 2.6.

2.9.2 Connecting with ssh
cvsnt uses the ssh protocol to perform these operations, so the remote user host needs to have a .rhosts file which grants access
to the local user.

For example, suppose you are the user mozart on the local machine toe.example.com, and the server machine is faun.example.org.
On faun, put the following line into the file .rhosts in bach’s home directory:

toe.example.com mozart

Then test that ssh is working with

ssh -1 bach faun.example.org ’'echo $PATH’

On some versions of cvsnt :ssh: protocol is available. This is a builtin ssh client which integrates cvs authentication with ssh
security.

At its simplest, this is used like :pserver:, as in:

cvs —-d :ssh:user@machine.example.org:/usr/local/cvs login
Password: xxxxx
cvs —-d :ssh:user@machine.example.org:/usr/local/cvs co myproject

However you can also register your private key with cvs, which it will use instead of a password:

cvs —d :ssh;key=’c:\user.ppk’ :user@machine.example.org:/usr/local/cvs login
Password: xxxx*x%%% (i1f your key has no passphrase, just press enter here)
cvs —-d :ssh:user@machine.example.org:/usr/local/cvs co myproject

The keys should be in the putty private key format. You can use PuttyGen to convert an existing Openssh private key to this
format.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 16/ 142

:ext: specifies an external ssh program. By default this is ssh but you may specify another program in the CVSROOT using the
optional :ext:{program} command. You may alternatively set the CVS_EXT environment variable to invoke another program
which can access the remote server (for example, remsh on HP-UX 9 because rsh is something different). It must be a program
which can transmit data to and from the server without modifying it

Continuing our example, supposing you want to access the module foo in the repository /usr/local/cvsroot/, on machine
faun.example.org, you are ready to go:

cvs —-d :ext:bach@faun.example.org/usr/local/cvsroot checkout foo

(The bach@ can be omitted if the username is the same on both the local and remote hosts.)

2.9.3 Using 3rd party clients via the extnt wrapper

(Windows only at present) The extnt.exe program is a wrapper client which allows 3rd-party clients to use CVSNT protocols to
access a CVSNT server. It uses the :ext: protocol on the client so should be compatible with all existing clients.

The program takes a number of optional parameters, which may or may not be defined by the client. A standard cvs client will

only usually pass the -1 (username) option.

-1 username Username to use.
-p protocol protocol to use. Default comes from the protocol= line in extnt.ini. If that is absent uses sspi.
-d directory repository directory. Default comes from the directory= line in extnt.ini

-P password Password to use. Default comes from the password= line in extnt.ini

Unless all parameters are passed on the command line by the client, you need to setup extnt.ini with the correct details. This file
is laid out as a standard windows .ini file, with the section name based on the hostname to connect to.

[cvs.myserver.orqg]
protocol=sspi
directory=/cvs

You can define multiple connections to the same host by using the hostname= entry, eg:

[cvs—-1]
protocol=sspi
directory=/cvs-repo—-1
hostname=cvs.myserver.org

[cvs—2]
protocol=sspi
directory=/cvs-repo-2
hostname=cvs.myserver.org

Configuring the client to call extnt.exe as its :ext: application is client specific.

2.9.4 Direct connection with password authentication

The cvsnt client can also connect to the server using a password protocol. This is particularly useful if using ssh is not feasible
(for example, the server is behind a firewall), and Kerberos also is not available.

To use this method, it is necessary to make some adjustments on both the server and client sides.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 17 /142

2.9.4.1 Setting up the server for Authentication

First of all, you probably want to tighten the permissions on the $CVSROOT and $CVSROOT/CVSROOT directories. See
Section 2.9.4.4, for more details.

On Windows Server (2003, 2008, 2012 etc.), on the server side, you must run the cvsmanager.exe program which calls the cvs.exe
when required. Setup is done using the cvsnt server control panel. the rest of this chapter is mostly Unix related.

On Unix, on the server side, the file /etc/cvsnt/PServer, /etc/cvsnt/Plugins, and /etc/cvsnt/server need to be edited so cvsman-
ager knows the location of your repositories and other parameters (eg: connection port etc.).

Older versions of CVSNT used /etc/inetd.conf or /etc/xinetd.conf for this purpose - these are no longer used with CVSNT 2.8
and later.

By default, the port number is for pserver is 2401 it would be different for pserver if your client were compiled with CVS_AUTH_PORT
defined to something else, though. This can also be sepcified in the CVSROQOT variable (Section 2.9) or overridden with the
CVS_CLIENT_PORT environment variable (Appendix C), or, on Windows Server, set in the cvsnt server control panel.

You can use the /etc/cvsnt/PServer file to specify a temporary directory, or, on Windows Server set this within the cvsnt server
control panel.

If you are having trouble setting this up, see Section E.2.

2.9.4.2 CVS passwd file

Because the client stores and transmits passwords in cleartext (almost--see Section 2.9.4.4, for details), a separate cvsnt password
file is generally used, so people don’t compromise their regular passwords when they access the repository. This file is $CVS-
ROOT/CVSROOT/passwd (Section 2.4). It uses a colon-separated format, similar to /etc/passwd on Unix systems, except that
it has fewer fields: cvsnt username, optional password, and an optional system username for cvsnt to run as if authentication
succeeds. Here is an example passwd file with five entries:

anonymous :
bach:ULtgRLX07NRxs
spwang:1sOp854gDF3DY
melissa:tGX1f£S8sun6rY:pubcvs
gproj:XR4EZcEsOszik:pubcvs

(The passwords are encrypted according to the standard Unix crypt() function, so it is possible to paste in passwords directly
from regular Unix /etc/passwd files.)

The first line in the example will grant access to any cvsnt client attempting to authenticate as user anonymeous, no matter what
password they use, including an empty password. (This is typical for sites granting anonymous read-only access; for information
on how to do the "read-only" part, see Section 3.9.)

The second and third lines will grant access to bach and spwang if they supply their respective plaintext passwords.

The fourth line will grant access to melissa, if she supplies the correct password, but her cvsnt operations will actually run on the
server side under the system user pubcevs. Thus, there need not be any system user named melissa, but there must be one named
pubcvs.

The fifth line shows that system user identities can be shared: any client who successfully authenticates as qproj will actually
run as pubcvs, just as melissa does. That way you could create a single, shared system user for each project in your repository,
and give each developer their own line in the SCVSROOT/CVSROOT/passwd file. The cvsnt username on each line would be
different, but the system username would be the same. The reason to have different cvsnt usernames is that cvsnt will log their
actions under those names: when melissa commits a change to a project, the checkin is recorded in the project’s history under
the name melissa, not pubcvs. And the reason to have them share a system username is so that you can arrange permissions in
the relevant area of the repository such that only that account has write-permission there.

If the system-user field is present, all password-authenticated cvsnt commands run as that user; if no system user is specified,
cvsnt simply takes the cvsnt username as the system username and runs commands as that user. In either case, if there is no such
user on the system, then the cvsnt operation will fail (regardless of whether the client supplied a valid password).

The password and system-user fields can both be omitted (and if the system-user field is omitted, then also omit the colon that
would have separated it from the encrypted password). For example, this would be a valid $CVSROOT/CVSROOT/passwd
file:

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 18/ 142

anonymous: :pubcvs
fish:rKa5jzULzmhOo:kfogel
sussman:1sOp854gDF3DY

When the password field is omitted or empty, then the client’s authentication attempt will succeed with any password, including
the empty string. However, the colon after the cvsnt username is always necessary, even if the password is empty.

cvsnt can also fall back to use system authentication. When authenticating a password, the server first checks for the user in
the SCVSROOT/CVSROOT/passwd file. If it finds the user, it will use that entry for authentication as described above. But
if it does not find the user, or if the cvsnt passwd file does not exist, then the server can try to authenticate the username and
password using the operating system’s user-lookup routines (this "fallback" behavior can be disabled by setting SystemAuth=no
in the cvsnt config file, Section B.25). Be aware, however, that falling back to system authentication might be a security risk:
cvsnt operations would then be authenticated with that user’s regular login password, and the p assword flies across the network
in plaintext. See Section 2.9.4.4 for more on this.

You can setup the passwd file by logging in to cvs using another method (local, sserver, gserver, ssh, sspi) and using the cvsnt
passwd command to add new users.

2.9.4.3 Using the client with password authentication

To run a cvsnt command on a remote repository via the password-authenticating server, one specifies the protocol, optional
username, repository host, an optional port number, and path to the repository. For example:

cvs —-d :pserver:faun.example.org:/usr/local/cvsroot checkout someproj
cvs —-d :sserver:faun.example.org:/usr/local/cvsroot checkout someproj

cvs —-d :sspi:faun.example.org:/usr/local/cvsroot checkout someproj

With certain protcols, unless you’re connecting to a public-access repository (i.e., one where that username doesn’t require a
password), you’ll need to supply a password or log in first. Logging in verifies your password with the repository and stores it in
a file. It’s done with the login command, which will prompt you interactively for the password if you didn’t supply one as part
of SCVSROOT:

cvs —-d :pserver:bach@faun.example.org:/usr/local/cvsroot login
CVS password:

or

cvs —-d :pserver:bach:pd4ss30rd@faun.example.org:/usr/local/cvsroot login

After you enter the password, cvsnt verifies it with the server. If the verification succeeds, then that combination of username,
host, repository, and password is permanently recorded, so future transactions with that repository won’t require you to run cvs
login. (If verification fails, cvsnt will exit complaining that the password was incorrect, and nothing will be recorded.)

The records are stored, by default, in the file SHOME/.cvspass (Unix) or the Registry (Windows). The format human-readable,
and to a degree human-editable, but note that the passwords are not stored in cleartext--they are trivially encoded to protect them
from "innocent" compromise (i.e., inadvertent viewing by a system administrator or other non-malicious person).

Once you have logged in, all cvsnt commands using that remote repository and username will authenticate with the stored
password. So, for example

cvs —-d :pserver:bach@faun.example.org:/usr/local/cvsroot checkout foo

should just work (unless the password changes on the server side, in which case you’ll have to re-run cvs login).

Note that if the :pserver: were not present in the repository specification, cvsnt would assume it should use ssh to connect with
the server instead (Section 2.9.2).

Of course, once you have a working copy checked out and are running cvsnt commands from within it, there is no longer any
need to specify the repository explicitly, because cvsnt can deduce the repository from the working copy’s CVS subdirectory.

The password for a given remote repository can be removed from the password cache by using the cvs logout command.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 19/ 142

2.9.4.4 Security considerations with password authentication

With pserver and sserver, the passwords are stored on the client side in a trivial encoding of the cleartext and in the pserver
case transmitted in the same encoding. The encoding is done only to prevent inadvertent password compromises (i.e., a system
administrator accidentally looking at the file), and will not prevent even a naive attacker from gaining the password.

With sserver, the client/server connection is encrypted using SSL, and the risk of the password being sniffed ’on the wire’ is very
low.

With sspi, if cvsnt login is used to gain access to a remote server, the passwords are stored on the client side in the same manner
as pserver. However the passwords are never transmitted insecurely over the internet.

With pserver and sserver, the separate cvsnt password file (Section 2.9.4.1) allows people to use a different password for repos-
itory access than for login access. With other protocols the system passwords are used and the password field in the passwd file
is ignored.

Once a user has non-read-only access to the repository, she can execute programs on the server system through a variety of
means. Thus, repository access implies fairly broad system access as well. It might be possible to modify cvsnt to prevent that,
but no one has done so as of this writing.

Note that because the $CVSROOT/CVSROOT directory contains passwd and other files which are used to check security,
you must control the permissions on this directory as tightly as the permissions on /ete. The same applies to the $CVSROOT
directory itself and any directory above it in the tree. Anyone who has write access to such a directory will have the ability to
become any user on the system. Note that these permissions are typically tighter than you would use if you are not using pserver.

In summary, with a password server anyone who gets the password gets repository access (which may imply some measure of
general system access as well).

With pserver, the password is available to anyone who can sniff network packets or read a protected (i.e., user read-only) file.
Other protocols do not have this problem.

2.9.5 Direct connection with GSSAPI
GSSAPI is a generic interface to network security systems such as Kerberos 5. If you have a working GSSAPI library, you can
have cvsnt connect via a direct tcp connection, authenticating with GSSAPI.

To do this, cvsnt needs to be compiled with GSSAPI support; when configuring cvsnt it tries to detect whether GSSAPI libraries
using kerberos version 5 are present. You can also use the -with-gssapi flag to configure.

The connection is authenticated using GSSAPI, but the message stream is not authenticated by default. You must use the -a
global option to request stream authentication.

The data transmitted is not encrypted by default. Encryption support must be compiled into both the client and the server; use
the -enable-encrypt configure option to turn it on. You must then use the -x global option to request encryption.

GSSAPI connections are handled on the server side by the same server which handles the password authentication server; see
Section 2.9.4.1. If you are using a GSSAPI mechanism such as Kerberos which provides for strong authentication, you will
probably want to disable the ability to authenticate via cleartext passwords. To do so, create an empty CVSROOT/passwd
password file, and set SystemAuth=no in the config file (Section B.25).

The GSSAPI server uses a principal name of cvs/hostname, where hostname is the canonical name of the server host. You
will have to set this up as required by your GSSAPI mechanism.

To connect using GSSAPI, use :gserver:. For example,

cvs —-d :gserver:faun.example.org:/usr/local/cvsroot checkout foo

2.9.6 Connecting with fork

This access method allows you to connect to a repository on your local disk via the remote protocol. In other words it does pretty
much the same thing as :local:, but various quirks, bugs and the like are those of the remote cvsnt rather than the local cvsnt.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 20/ 142

For day-to-day operations you might prefer either :local: or :fork:, depending on your preferences. Of course :fork: comes
in particularly handy in testing or debugging cvsnt and the remote protocol. Specifically, we avoid all of the network-related
setup/configuration, timeouts, and authentication inherent in the other remote access methods but still create a connection which
uses the remote protocol.

To connect using the fork method, use :fork: and the pathname to your local repository. For example:

cvs —-d :fork:/usr/local/cvsroot checkout foo

2.9.7 Using repository aliases
Repository aliases hide the real paths to the repositories on the server behind virtual names. The server information is hidden to
clients which increases security and means the cvs root strings are independent of the server architecture.

Aliases are normally specified in the /etc/cvsnt/PServer file on Unix, or in the CVSNT Server Control Panel on Windows.
Especially on Windows is is recommended that aliases are used to avoid exposing Windows drive letters (C:, D:) to the clients.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 21/142

Chapter 3

Security

A remote cvsnt repository can be set up to have its own security system outside of the standard security provided by the system.
See also information about the chacl and chown commands, and the CVSROOT/admin file.

3.1 How to set up security

First setup the server normally. Changing the base path as described in Section 2.9.7 can be very convenient. The command
should run as the user that owns the repository (not root). Use the RunAsUser setting for this.

On Unix systems setting a the Chroot variable is recommended also.

To lock down the access to the repository by default set the AcIMode setting in the CVSROOT/config to *normal’. This will stop
anyone accessing the any file unless they are specifically granted access by an access control entry

On a secure system it is recommended that pserver is not used, as it sends its passwords in a trivially decryptable form. On
Windows systems use encrypted SSPI, and on Unix ssh is recommended.

3.2 How to add and delete users

The cvs passwd command can be used to add or delete new users. Only an administrator can do this.

Note that deleting a user does not remove them from any user permissions.

3.3 Setting permissions for files and directories

CVSNT has its own access control mechanism that is aware of branches and other CVSNT features. There are currently 5 access
that can be set, and 3 ways of matching the access entry.

The access permissions are as follows:

read User is able to read the file, or for a directory access files within that directory
write User is able to commit a new revision to the file or directory

create User is able to add new files to the directory.

tag User is able to tag the file or files within the directory.

control User is able to modify the access controls for the file or directory. This right is granted automatically to the file owner
and to repository administrators.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 22/142

Each access entry has 3 attributes which define which situations it applies to.

Username (-u) Defines that this access entry applies to a single user or group. Where this is specified it is the most significant
attribute.

Branch (-r) Defines that this access entry applies to a single branch or tag. Where this is specified it is the second most
significant attribute.

Merge (-j) Defines that this access entry applies when a merge is attempted from the specified branch.
There are also 3 optional attributes that may be specified for each access entry.

Message (-m) Define a custom message displayed to the user when an action fails due to this entry.

Priority (-p) Normally CVSNT prioritises access entries using a ’best fit’ match, with ambguities solved as described above. In
exceptional cases it may be necessary to override this behaviour. Specifying a priority over 100 is guaranteed to be higher
than the caculated priorities, and will ensure that this ACL entry overrides all others.

Inheritance (-n) Normally directory access control entries automatically inherit, which means setting an access control entry
on the root of a module affects all directories below it, unless overriden by an entry further down the tree. This option
supresses that behaviour.

Access permissions are modified using the ¢vs chacl command. For example:

cvs chacl -a read,write,create —u theuser dirl dir2 dir3

Those permissions will be inherited by a sub-diretory, so to stop commits on a sub-directory you would need to explicitly deny
it. For example:

cvs chacl -a nowrite,nocreate —-u theuser dirl/dir4

will grant the user named theuser read and write access to the three specified directories.

To view the current permissions the cvsnt Isacl command can be used. It will show the owner and all the users that have
permissions in the given directories.

If the user name is not specified, those permissions will be given to all users of the directory, if not overriden by other entries.
This is an easy way to give everyone read access to a directory, for instance.

For a user to have access to a directory, they must have at least read access to all the directories above it. If a user has a 'no
access’ ACL on a parent directory they cannot be granted access to directories below it.

The owner or a directory can be reassigned using the cvsnt chown command.

See also Section A.9, Section A.25 and Section A.11.

3.4 Groups of users can be assigned permissions

Sometimes administrators find it easier to maintain permissions on groups of users instead of on individual users. That way, if a
group of people have access to a directory, the group can be assigned rights to the directories and the administrator only needs to
modify the members of the group to maintain the permissions.

If SystemAuth is enabled CVSNT will automatically add all the system groups for the user to the list of available groups. If you
don’t require other groups then editing the group file is unnecessary.

The group file in the CVSROOT directory holds a list of groups. The file has two fields seperated by a colon, the first is the
group name, the second is a list of group members, separated by white space, such as:

groupl: userl user2 user3
group2: me you dognamedblue
group3: peter paul mary

To set up groups, edit the group file in the CVSROOT directory in the repository and set up the permissions for the groups.

Repository administrators are automatically made a member of the group ’admin’. Don’t list this group in the group file.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 23/ 142

3.5 Running CVSNT as a nonprivileged user

Under the traditional CVS execution model, the server runs as the user checking in the file. For some security requirements this
is inadequate, so CVSNT also provides a RunAsUser parameter (in the /etc/cvsnt/PServer or the in the registry under Windows).
If this is set, the server always runs as the specified user, who should be a nonprivileged user who has read/write access only to
the repository files. See also Section 3.6.

3.6 Running within a chroot jail

On operating systems that support this operation, cvsnt provides the Chroot parameter (in the /etc/cvsnt/PServer file). After
CVSNT has loaded it will perform the chroot just prior to dropping privileges and before any filesystem operations.

The chroot jail must contain a /tmp directory for use by the server but does not need any binary or library directories. In the
minimal (most secure) configuration it is impossible to run scripts of any kind. Adding binaries/libraries to allow script execution
should be done with care. Never add setuid binaries to a chroot jail as it may allow an attacker an avenue to break out of it.

3.7 Setting and changing passwords

Users can use the cvs passwd command with no parameters to modify their passwords. The administrator can specify a user on
the command line to change their password.

3.8 Repository administrators

If SystemAuth = Yes the user is considered to be an administrator of they are listed in the CVSROOT/admin file or if they are in
the > Administrators’ group (Windows) or ’cvsadmin’ group (Unix).

If SystemAuth = No only the CVSROOT/admin file is checked.

The CVSROOT/admin file contains a list of usernames who are designated repository administrators, one per line. This file
should *not* be put under cvsnt control, as that would be a security risk.

Repository administrators are automatically made members of the group admin’.

3.9 Read-only repository access

It is possible to grant read-only repository access to people using the password-authenticated server (Section 2.9.4). (The other
access methods do not have explicit support for read-only users because those methods all assume login access to the repository
machine anyway, and therefore the user can do whatever local file permissions allow her to do.)

A user who has read-only access can do only those cvsnt operations which do not modify the repository, except for certain
"administrative" files (such as lock files and the history file). It may be desirable to use this feature in conjunction with user-
aliasing (Section 2.9.4.1).

Unlike with previous versions of cvsnt, read-only users should be able merely to read the repository, and not to execute programs
on the server or otherwise gain unexpected levels of access. Or to be more accurate, the known holes have been plugged. Because
this feature is new and has not received a comprehensive security audit, you should use whatever level of caution seems warranted
given your attitude concerning security.

There are two ways to specify read-only access for a user: by inclusion, and by exclusion.

"Inclusion" means listing that user specifically in the SCVSROOT/CVSROOT/readers file, which is simply a newline-separated
list of users. Here is a sample readers file:

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 24 /142

melissa
splotnik
Jjrandom

(Don’t forget the newline after the last user.)
"Exclusion" means explicitly listing everyone who has write access--if the file

SCVSROOT/CVSROOT /writers

exists, then only those users listed in it have write access, and everyone else has read-only access (of course, even the read-only
users still need to be listed in the cvsnt passwd file). The writers file has the same format as the readers file.

Note: if your cvsnt passwd file maps cvs users onto system users (Section 2.9.4.1), make sure you deny or grant read-only access
using the cvsnt usernames, not the system usernames. That is, the readers and writers files contain cvs usernames, which may
or may not be the same as system usernames.

Here is a complete description of the server’s behavior in deciding whether to grant read-only or read-write access:

If readers exists, and this user is listed in it, then she gets read-only access. Or if writers exists, and this user is NOT listed
in it, then she also gets read-only access (this is true even if readers exists but she is not listed there). Otherwise, she gets full
read-write access.

Of course there is a conflict if the user is listed in both files. This is resolved in the more conservative way, it being better to
protect the repository too much than too little: such a user gets read-only access.

3.10 Temporary directories for the server

While running, the cvsnt server creates temporary directories. They are named

cvs—-servpid

where pid is the process identification number of the server. They are located in the directory specified by the TMPDIR
environment variable (Appendix C), the -T global option (Section A.4), or failing that /tmp.

In most cases the server will remove the temporary directory when it is done, whether it finishes normally or abnormally.
However, there are a few cases in which the server does not or cannot remove the temporary directory, for example:

« If the server aborts due to an internal server error, it may preserve the directory to aid in debugging
« If the server is killed in a way that it has no way of cleaning up (most notably, Kill -KILL on unix).

* If the system shuts down without an orderly shutdown, which tells the server to clean up.

In cases such as this, you will need to manually remove the cvs-servpid directories. As long as there is no server running with
process identification number pid, it is safe to do so.

3.11 The CVSNT lockserver

In all recent versions of CVSNT the lockserver is the primary means of handling file locking. There should normally only be one
lockserver, which may be shared by multiple repositories. Once running it should require little or no maintenence.

The lockserver provides file-level locking for the server, which allows much greater concurrency than previous versions of CVS.
It also provides checkout atomicity which ensures that you always get a coherent view of the repository. The previous method of
locking using directory locks on the filesystem is now depreciated and should not be used as it does not have these advantages.

Setting up the lockserver under Windows is handled by the setup program and happens automatically. Under Unix you need to
arrange to run the cvslockd on startup - this varies between versions.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 25/ 142

Chapter 4

Starting a project with CVS

Because renaming files and moving them between directories is somewhat inconvenient, the first thing you do when you start a
new project should be to think through your file organization. It is not impossible to rename or move files, but it does increase
the potential for confusion and cvsnt does have some quirks particularly in the area of renaming directories. Section 8.4.

What to do next depends on the situation at hand.

4.1 Setting up the files

The first step is to create the files inside the repository. This can be done in a couple of different ways.

4.1.1 Creating a directory tree from a number of files

When you begin using cvsnt, you will probably already have several projects that can be put under cvsnt control. In these cases
the easiest way is to use the import command. An example is probably the easiest way to explain how to use it. If the files you
want to install in cvsnt reside in wdir, and you want them to appear in the repository as SCVSROOT/yoyodyne/rdir, you can
do this:

$ cd wdir
$ cvs import -m "Imported sources" yoyodyne/rdir yoyo start

Unless you supply a log message with the -m flag, cvsnt starts an editor and prompts for a message. The string yoyo is a vendor
tag, and start is a release tag. They may fill no purpose in this context, but since cvsnt requires them they must be present.
Chapter 14, for more information about them.

You can now verify that it worked, and remove your original source directory.

$ cd ..

$ cvs checkout yoyodyne/rdir # Explanation below
$ diff -r wdir yoyodyne/rdir

$ rm —-r wdir

Erasing the original sources is a good idea, to make sure that you do not accidentally edit them in wdir, bypassing cvsnt. Of
course, it would be wise to make sure that you have a backup of the sources before you remove them.

The checkout command can either take a module name as argument (as it has done in all previous examples) or a path name
relative to $CVSROOT, as it did in the example above.

It is a good idea to check that the permissions cvsnt sets on the directories inside $CVSROOT are reasonable, and that they
belong to the proper groups. Section 2.2.2.

If some of the files you want to import are binary, you may want to use the wrappers features to specify which files are binary
and which are not. Section B.3.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 26/ 142

4.1.2 Creating Files From Other Version Control Systems

If you have a project which you are maintaining with another version control system, such as rcs, you may wish to put the files
from that project into cvsnt, and preserve the revision history of the files.

From rcs If you have been using rcs, find the rcs files--usually a file named foo.c will have its rcs file in res/foo.c,v (but it could
be other places; consult the rcs documentation for details). Then create the appropriate directories in cvsnt if they do not
already exist. Then copy the files into the appropriate directories in the cvsnt repository (the name in the repository must
be the name of the source file with ,v added; the files go directly in the appropriate directory of the repository, not in an res
subdirectory). This is one of the few times when it is a good idea to access the cvsnt repository directly, rather than using
cvsnt commands. Then you are ready to check out a new working directory.

The rcs file should not be locked when you move it into cvsnt; if it is, cvsnt will have trouble letting you operate on it.

From another version control system Many version control systems have the ability to export rcs files in the standard format.
If yours does, export the rcs files and then follow the above instructions.

Failing that, probably your best bet is to write a script that will check out the files one revision at a time using the command
line interface to the other system, and then check the revisions into cvsnt. The sces2res script mentioned below may be a
useful example to follow.

From SCCS There is a script in the contrib directory of the cvsnt source distribution called sces2res which converts sccs files
to rcs files. Note: you must run it on a machine which has both sccs and rcs installed, and like everything else in contrib it
is unsupported (your mileage may vary).

From PVCS There is a script in the contrib directory of the cvsnt source distribution called pves_to_rcs which converts pvcs
archives to rcs files. You must run it on a machine which has both pvcs and rcs installed, and like everything else in contrib
it is unsupported (your mileage may vary). See the comments in the script for details.

4.1.3 Creating a directory tree from scratch

For a new project, the easiest thing to do is probably to create an empty directory structure, like this:

$ mkdir tc
$ mkdir tc/man
$ mkdir tc/testing

After that, you use the import command to create the corresponding (empty) directory structure inside the repository:

$ cd tc
$ cvs import -m "Created directory structure" yoyodyne/dir yoyo start

Then, use add to add files (and new directories) as they appear.

Check that the permissions cvsnt sets on the directories inside $SCVSROOT are reasonable.

4.2 Defining the module

The next step is to define the module in the modules file. This is not strictly necessary, but modules can be convenient in grouping
together related files and directories.

In simple cases these steps are sufficient to define a module.

1. Get a working copy of the modules file.

S cvs checkout CVSROOT/modules
$ cd CVSROOT

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 27 /142

2. Edit the file and insert a line that defines the module. Section 2.4, for an introduction. Section B.1, for a full description of
the modules file. You can use the following line to define the module tc:

tc yoyodyne/tc

3. Commit your changes to the modules file.

$ cvs commit -m "Added the tc module." modules

4. Release the modules module.

$ cd ..
$ cvs release —d CVSROOT

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 28/ 142

Chapter 5

Revisions

For many uses of cvsnt, one doesn’t need to worry too much about revision numbers; cvsnt assigns numbers such as 1.1, 1.2,
and so on, and that is all one needs to know. However, some people prefer to have more knowledge and control concerning how
cvsnt assigns revision numbers.

If one wants to keep track of a set of revisions involving more than one file, such as which revisions went into a particular release,
one uses a tag, which is a symbolic revision which can be assigned to a numeric revision in each file.

5.1 Revision numbers

Each version of a file has a unique revision number. Revision numbers look like 1.1, 1.2, 1.3.2.2 or even 1.3.2.2.4.5. A revision
number always has an even number of period-separated decimal integers. By default revision 1.1 is the first revision of a file.
Each successive revision is given a new number by increasing the rightmost number by one. The following figure displays a few
revisions, with newer revisions to the right.

It is also possible to end up with numbers containing more than one period, for example 1.3.2.2. Such revisions represent
revisions on branches (Chapter 6); such revision numbers are explained in detail in Section 6.4.

5.2 \Versions, revisions and releases

A file can have several versions, as described above. Likewise, a software product can have several versions. A software product
is often given a version number such as 4.1.1.

Versions in the first sense are called revisions in this document, and versions in the second sense are called releases. To avoid
confusion, the word version is almost never used in this document.

5.3 Assigning revisions

By default, cvsnt will assign numeric revisions by leaving the first number the same and incrementing the second number. For
example, 1.1, 1.2, 1.3, etc.

When adding a new file, the second number will always be one and the first number will equal the highest first number of any
file in that directory. For example, the current directory contains files whose highest numbered revisions are 1.7, 3.1, and 4.12,
then an added file will be given the numeric revision 4.1.

There is no reason to care about the revision numbers--it is easier to treat them as internal numbers that cvsnt maintains, and tags
provide a better way to distinguish between things like release 1 versus release 2 of your product (Section 5.4).

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 29/ 142

5.4 Tags-Symbolic revisions

The revision numbers live a life of their own. They need not have anything at all to do with the release numbers of your software
product. Depending on how you use cvsnt the revision numbers might change several times between two releases. As an example,
some of the source files that make up rcs 5.6 have the following revision numbers:

@il.E@ 5.21
co.c 5.9
ident.c 5.3
rcs.c 5.12
rcsbase.h 5.11
rcsdiff.c 5.10
rcsedit.c 5.11
rcsfecmp.c 5.9
rcsgen.c 5.10
rcslex.c 5.11
rcsmap.c 5.2
rcsutil.c 5.10

You can use the tag command to give a symbolic name to a certain revision of a file. You can use the -v flag to the status
command to see all tags that a file has, and which revision numbers they represent. Tag names must start with an uppercase
or lowercase letter and can contain uppercase and lowercase letters, digits, -, and _. The two tag names BASE and HEAD are
reserved for use by cvsnt. It is expected that future names which are special to cvsnt will be specially named, for example by
starting with ., rather than being named analogously to BASE and HEAD, to avoid conflicts with actual tag names.

You’ll want to choose some convention for naming tags, based on information such as the name of the program and the version
number of the release. For example, one might take the name of the program, immediately followed by the version number with
. changed to -, so that cvsnt 1.9 would be tagged with the name cvs1-9. If you choose a consistent convention, then you won’t
constantly be guessing whether a tag is cvs-1-9 or cvs1_9 or what. You might even want to consider enforcing your convention
in the taginfo file (Section 9.3).

The following example shows how you can add a tag to a file. The commands must be issued inside your working directory. That
is, you should issue the command in the directory where backend.c resides.

$ cvs tag rel-0-4 backend.c
T backend.c
$ cvs status -v backend.c

File: backend.c Status: Up-to-date
Version: 1.4 Tue Dec 1 14:39:01 1992
rcs Version: 1.4 /u/cvsroot/yoyodyne/tc/backend.c, v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)
Existing Tags:
rel-0-4 (revision: 1.4)

For a complete summary of the syntax of cvs tag, including the various options, see Section A.38.

There is seldom reason to tag a file in isolation. A more common use is to tag all the files that constitute a module with the same
tag at strategic points in the development life-cycle, such as when a release is made.

$ cvs tag rel-1-0
cvs tag: Tagging
T Makefile

T backend.c

T driver.c

T frontend.c

T parser.c

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 30/ 142

(When you give cvsnt a directory as argument, it generally applies the operation to all the files in that directory, and (recursively),
to any subdirectories that it may contain. Chapter 7.)

The checkout command has a flag, -r, that lets you check out a certain revision of a module. This flag makes it easy to retrieve
the sources that make up release 1.0 of the module tc at any time in the future:

$ cvs checkout -r rel-1-0 tc

This is useful, for instance, if someone claims that there is a bug in that release, but you cannot find the bug in the current working
copy.

You can also check out a module as it was at any given date. Section A.10.1. When specifying -r to any of these commands, you
will need beware of sticky tags; see Section 5.11.

When you tag more than one file with the same tag you can think about the tag as "a curve drawn through a matrix of filename
vs. revision number." Say we have 5 files with the following revisions:

filel file2 file3 filed fileb

1.1 1.1 1.1 1.1 /—1.1x <—-%x— TAG
1.2%— 1.2 1.2 -1.2x—
1.3 \= 1.3%- 1.3 / 1.3
1.4 \ 1.4 / 1.4
\-1.5%— 1.5
1.6

At some time in the past, the * versions were tagged. You can think of the tag as a handle attached to the curve drawn through
the tagged revisions. When you pull on the handle, you get all the tagged revisions. Another way to look at it is that you "sight"
through a set of revisions that is "flat" along the tagged revisions, like this:

filel file2 file3 filed fileb

1.1
1.2
1.1 1.3 —
1.1 1.2 1.4 1.1 /
1o 2tr====1 ; Jtr====1 , Gir=—==1 , Biv====1l., 1 (=== <=== Leek hecEre
1.3 1.6 1.3 _
1.4 1.4
1.3

5.5 Specifying what to tag from the working directory

The example in the previous section demonstrates one of the most common ways to choose which revisions to tag. Namely,
running the cvs tag command without arguments causes cvsnt to select the revisions which are checked out in the current
working directory. For example, if the copy of backend.c in working directory was checked out from revision 1.4, then cvsnt
will tag revision 1.4. Note that the tag is applied immediately to revision 1.4 in the repository; tagging is not like modifying a
file, or other operations in which one first modifies the working directory and then runs cvs commit to transfer that modification
to the repository.

One potentially surprising aspect of the fact that cvs tag operates on the repository is that you are tagging the checked-in revisions,
which may differ from locally modified files in your working directory. If you want to avoid doing this by mistake, specify the
-c option to cvs tag. If there are any locally modified files, cvsnt will abort with an error before it tags any files:

$ cvs tag -c rel-0-4
cvs tag: backend.c is locally modified
cvs [tag aborted]: correct the above errors first!

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 31/142

5.6 Specifying what to tag by date or revision

The cvs rtag command tags the repository as of a certain date or time (or can be used to tag the latest revision). rtag works
directly on the repository contents (it requires no prior checkout and does not look for a working directory).

The following options specify which date or revision to tag. See Section A.5, for a complete description of them.

-D date Tag the most recent revision no later than date.

-f Only useful with the -D date or -r tag flags. If no matching revision is found, use the most recent revision (instead of
ignoring the file).

-r tag Only tag those files that contain existing tag tag.

The cvs tag command also allows one to specify files by revision or date, using the same -r, -D, and -f options. However, this
feature is probably not what you want. The reason is that cvs tag chooses which files to tag based on the files that exist in the
working directory, rather than the files which existed as of the given tag/date. Therefore, you are generally better off using cvs
rtag. The exceptions might be cases like:

cvs tag -r 1.4 backend.c

5.7 Deleting, moving, and renaming tags

Normally one does not modify tags. They exist in order to record the history of the repository and so deleting them or changing
their meaning would, generally, not be what you want.

However, there might be cases in which one uses a tag temporarily or accidentally puts one in the wrong place. Therefore, one
might delete, move, or rename a tag. Warning: the commands in this section are dangerous; they permanently discard historical
information and it can difficult or impossible to recover from errors. If you are a cvsnt administrator, you may consider restricting
these commands with taginfo (Section 9.3).

To delete a tag, specify the -d option to either cvs tag or cvs rtag. For example:

cvs rtag -d rel-0-4 tc

deletes the tag rel-0-4 from the module tc.

When we say move a tag, we mean to make the same name point to different revisions. For example, the stable tag may currently
point to revision 1.4 of backend.c and perhaps we want to make it point to revision 1.6. To move a tag, specify the -F option to
either cvs tag or cvs rtag. For example, the task just mentioned might be accomplished as:

cvs tag -r 1.6 —-F stable backend.c

By default CVS doesn’t allow moving and deleting branch tags, as this should not be done without understanding the issues that
this raises. To override this, specify the -B option on the command line.

When we say rename a tag, we mean to make a different name point to the same revisions as the old tag. For example, one may
have misspelled the tag name and want to correct it (hopefully before others are relying on the old spelling). To rename a tag,
first create a new tag using the -r option to cvs rtag, and then delete the old name. This leaves the new tag on exactly the same
files as the old tag. For example:

cvs rtag -r old-name-0-4 rel-0-4 tc
cvs rtag —-d old-name-0-4 tc

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 32/ 142

5.8 Tagging and adding and removing files

The subject of exactly how tagging interacts with adding and removing files is somewhat obscure; for the most part cvsnt will
keep track of whether files exist or not without too much fussing. By default, tags are applied to only files which have a revision
corresponding to what is being tagged. Files which did not exist yet, or which were already removed, simply omit the tag, and
cvsnt knows to treat the absence of a tag as meaning that the file didn’t exist as of that tag.

However, this can lose a small amount of information. For example, suppose a file was added and then removed. Then, if the tag
is missing for that file, there is no way to know whether the tag refers to the time before the file was added, or the time after it
was removed. If you specify the -r option to cvs rtag, then cvsnt tags the files which have been removed, and thereby avoids this
problem. For example, one might specify -r HEAD to tag the head.

5.9 Alias tags

Normally setting a tag equal to a branch with the -r causes the tag to be set to the revison at the head of the branch at that point.
The -A option to tag and rtag changes this behaviour so that the new tag becomes an alias name for the existing branch. This
allows you to switch active branches without having to change the clients.

5.10 Commit identifiers

A special 'meta-tag’ is applied to each committed change to the repository, which uniquely identifies that commit. This is
randomly generated string, and has no significance except that it is unique. It is used to group files from a single commit into a
changeset.

To operate on a single the command the @ and @< prefixes define the committed revision, and the revision before the commit
respectively.

For example:

S cvs diff -r "Q@<91c41475ddc4ad2" -r Q@91c41475ddc4ad2 foo.c
Index: a.txt

RCS file: d:/repo/test/foo.c,v
retrieving revision 1.2
retrieving revision 1.3

diff -rl1.2 -rl.3

Note that many shells treat the < symbol as special, so that part of the command will need to be quoted.

5.11 Sticky tags

Sometimes a working copy’s revision has extra data associated with it, for example it might be on a branch (Chapter 6), or
restricted to versions prior to a certain date by checkout -D or update -D. Because this data persists - that is, it applies to
subsequent commands in the working copy - we refer to it as sticky.

Most of the time, stickiness is an obscure aspect of cvsnt that you don’t need to think about. However, even if you don’t want to
use the feature, you may need to know something about sticky tags (for example, how to avoid them!).

You can use the status command to see if any sticky tags or dates are set:

$ cvs status driver.c

File: driver.c Status: Up-to-date

Version: 1.7.2.1 Sat Dec 5 19:35:03 1992

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 33/ 142

rcs Version: 1.7.2.1 /u/cvsroot/yoyodyne/tc/driver.c,v
Sticky Tag: rel-1-0-patches (branch: 1.7.2)

Sticky Date: (none)

Sticky Options: (none)

The sticky tags will remain on your working files until you delete them with cvs update -A. The -A option retrieves the version
of the file from the head of the trunk, and forgets any sticky tags, dates, or options.

The most common use of sticky tags is to identify which branch one is working on, as described in Section 6.3. However, non-
branch sticky tags have uses as well. For example, suppose that you want to avoid updating your working directory, to isolate
yourself from possibly destabilizing changes other people are making. You can, of course, just refrain from running cvs update.
But if you want to avoid updating only a portion of a larger tree, then sticky tags can help. If you check out a certain revision
(such as 1.4) it will become sticky. Subsequent cvs update commands will not retrieve the latest revision until you reset the tag
with cvs update -A. Likewise, use of the -D option to update or checkout sets a sticky date, which, similarly, causes that date to
be used for future retrievals.

People often want to retrieve an old version of a file without setting a sticky tag. This can be done with the -p option to checkout
or update, which sends the contents of the file to standard output. For example:

$ cvs update -p -r 1.1 filel >filel

Checking out filel
rcs: /tmp/cvs-sanity/cvsroot/first-dir/Attic/filel,v

VERS: 1.1
Xk K ok ko k ok kK kKK K K
$

However, this isn’t the easiest way, if you are asking how to undo a previous checkin (in this example, put filel back to the way
it was as of revision 1.1). In that case you are better off using the -j option to update; for further discussion see Section 6.8.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 34 /142

Chapter 6

Branching and merging

cvsnt allows you to isolate changes onto a separate line of development, known as a branch. When you change files on a branch,
those changes do not appear on the main trunk or other branches.

Later you can move changes from one branch to another branch (or the main trunk) by merging. Merging involves first running
cvs update -j, to merge the changes into the working directory. You can then commit that revision, and thus effectively copy the
changes onto another branch.

6.1 What branches are good for

Suppose that release 1.0 of tc has been made. You are continuing to develop tc, planning to create release 1.1 in a couple of
months. After a while your customers start to complain about a fatal bug. You check out release 1.0 (Section 5.4) and find the
bug (which turns out to have a trivial fix). However, the current revision of the sources are in a state of flux and are not expected
to be stable for at least another month. There is no way to make a bugfix release based on the newest sources.

The thing to do in a situation like this is to create a branch on the revision trees for all the files that make up release 1.0 of tc.
You can then make modifications to the branch without disturbing the main trunk. When the modifications are finished you can
elect to either incorporate them on the main trunk, or leave them on the branch.

6.2 Creating a branch

You can create a branch with tag -b; for example, assuming you’re in a working copy:

$ cvs tag -b rel-1-0O-patches

This splits off a branch based on the current revisions in the working copy, assigning that branch the name rel-1-0-patches.

It is important to understand that branches get created in the repository, not in the working copy. Creating a branch based on
current revisions, as the above example does, will not automatically switch the working copy to be on the new branch. For
information on how to do that, see Section 6.3.

You can also create a branch without reference to any working copy, by using rtag:

S cvs rtag -b -r rel-1-0 rel-1-0-patches tc

-r rel-1-0 says that this branch should be rooted at the revision that corresponds to the tag rel-1-0. It need not be the most recent
revision - it’s often useful to split a branch off an old revision (for example, when fixing a bug in a past release otherwise known
to be stable).

As with tag, the -b flag tells rtag to create a branch (rather than just a symbolic revision name). Note that the numeric revision
number that matches rel-1-0 will probably be different from file to file.

So, the full effect of the command is to create a new branch - named rel-1-0-patches - in module te, rooted in the revision tree at
the point tagged by rel-1-0.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 35/ 142

6.3 Accessing branches

You can retrieve a branch in one of two ways: by checking it out fresh from the repository, or by switching an existing working
copy over to the branch.

To check out a branch from the repository, invoke checkout with the -r flag, followed by the tag name of the branch (Section 6.2):

$ cvs checkout -r rel-1-O-patches tc

Or, if you already have a working copy, you can switch it to a given branch with update -r:

$ cvs update -r rel-1-0-patches tc

or equivalently:

$ cd tc
$ cvs update -r rel-1-0-patches

It does not matter if the working copy was originally on the main trunk or on some other branch - the above command will switch
it to the named branch. And similarly to a regular update command, update -r merges any changes you have made, notifying
you of conflicts where they occur.

Once you have a working copy tied to a particular branch, it remains there until you tell it otherwise. This means that changes
checked in from the working copy will add new revisions on that branch, while leaving the main trunk and other branches
unaffected.

To find out what branch a working copy is on, you can use the status command. In its output, look for the field named Sticky
tag (Section 5.11) - that’s cvsnt’s way of telling you the branch, if any, of the current working files:

$ cvs status -v driver.c backend.c

File: driver.c Status: Up-to-date
Version: 1.7 Sat Dec 5 18:25:54 1992
rcs Version: 1.7 /u/cvsroot/yoyodyne/tc/driver.c, v
Sticky Tag: rel-1-0-patches (branch: 1.7.2)
Sticky Date: (none)
Sticky Options: (none)

Existing Tags:

rel-1-0-patches (branch: 1.7.2)
rel-1-0 (revision: 1.7)
File: backend.c Status: Up-to-date
Version: 1.4 Tue Dec 1 14:39:01 1992
rcs Version: 1.4 /u/cvsroot/yoyodyne/tc/backend.c,v
Sticky Tag: rel-1-0-patches (branch: 1.4.2)
Sticky Date: (none)
Sticky Options: (none)

Existing Tags:

rel-1-0-patches (branch: 1.4.2)
rel-1-0 (revision: 1.4)
rel-0-4 (revision: 1.4)

Don’t be confused by the fact that the branch numbers for each file are different (1.7.2 and 1.4.2 respectively). The branch tag
is the same, rel-1-0-patches, and the files are indeed on the same branch. The numbers simply reflect the point in each file’s
revision history at which the branch was made. In the above example, one can deduce that driver.c had been through more
changes than backend.c before this branch was created.

See Section 6.4 for details about how branch numbers are constructed.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 36/ 142

6.4 Branches and revisions

Ordinarily, a file’s revision history is a linear series of increments (Section 5.1):

However, cvsnt is not limited to linear development. The revision tree can be split into branches, where each branch is a self-
maintained line of development. Changes made on one branch can easily be moved back to the main trunk.

Each branch has a branch number, consisting of an odd number of period-separated decimal integers. The branch number is
created by appending an integer to the revision number where the corresponding branch forked off. Having branch numbers
allows more than one branch to be forked off from a certain revision.

All revisions on a branch have revision numbers formed by appending an ordinal number to the branch number. The following
figure illustrates branching with an example.

fom +
Branch 1.2.2.3.2 —> 1'1.2.2.3.2.1 !
/ +
/
/
o + o + - +
Branch 1.2.2 -—> _! 1.2.2.1 !-——=! 1.2.2.2 !=-——=1 1.2.2.3 !
/ - + o + o +
/
/
o= + B + +———— + Fo————— + +———— +
'r1.1 ' —!" 1.2 !=—-!' 1.3 !'=———=1 1.4 !=——=! 1.5 ! <- The main trunk
o + f————— + F————— + fo————— + +————= +
I
1
! o + fom + fom +
Branch 1.2.4 —> +—! 1.2.4.1 !-——=! 1.2.4.2 !—=! 1.2.4.3 !
o + o + fom———— +

The exact details of how the branch number is constructed is not something you normally need to be concerned about, but here
is how it works: When cvsnt creates a branch number it picks the first unused even integer, starting with 2. So when you want
to create a branch from revision 6.4 it will be numbered 6.4.2. All branch numbers ending in a zero (such as 6.4.0) are used
internally by cvsnt (Section 6.5). The branch 1.1.1 has a special meaning. Chapter 14.

6.5 Magic branch numbers

This section describes a cvsnt feature called magic branches. For most purposes, you need not worry about magic branches;
cvsnt handles them for you. However, they are visible to you in certain circumstances, so it may be useful to have some idea of
how it works.

Externally, branch numbers consist of an odd number of dot-separated decimal integers. Section 5.1. That is not the whole truth,
however. For efficiency reasons cvsnt sometimes inserts an extra O in the second rightmost position (1.2.4 becomes 1.2.0.4,
8.9.10.11.12 becomes 8.9.10.11.0.12 and so on).

cvsnt does a pretty good job at hiding these so called magic branches, but in a few places the hiding is incomplete:

* The magic branch number appears in the output from cvs log.

* You cannot specify a symbolic branch name to cvs admin.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 37 /142

You can use the admin command to reassign a symbolic name to a branch the way rcs expects it to be. If R4patches is assigned
to the branch 1.4.2 (magic branch number 1.4.0.2) in file numbers.c you can do this:

$ cvs admin -NR4patches:1.4.2 numbers.c

It only works if at least one revision is already committed on the branch. Be very careful so that you do not assign the tag to the
wrong number. (There is no way to see how the tag was assigned yesterday).

6.6 Merging an entire branch

You can merge changes made on a branch into your working copy by giving the -j branchname flag to the update subcommand.
With one -j branchname option it merges the changes made between the point where the branch was last merged and newest
revision on that branch (into your working copy).

If you wish to revert to the older CVS behaviour of merging from the point the branch forked, specify the -b option.

If you are updating from an Unix CVS server of older cvsnt server that doesn’t support merge points, then the merge will always
be done from the branch point.

The -j stands for "join".

Consider this revision tree:

+———— + +————— + +———— + +———— +
V1.1 !'-——! 1.2 1=——1 1,3 !=——=1 1.4 <- The main trunk
+———— + +—— + - + +——— +

|

!

! o + o +
Branch R1fix -> +-—-—-! 1.2.2.1 !-——=! 1.2.2.2 !

o + o +

The branch 1.2.2 has been given the tag (symbolic name) R1fix. The following example assumes that the module mod contains
only one file, m.c.

$ cvs checkout mod # Retrieve the latest revision, 1.4
$ cvs update -j R1fix m.c Merge all changes made on the branch,
i.e. the changes between revision 1.2
and 1.2.2.2, into your working copy
of the file.

4 oS o =

S cvs commit -m "Included R1fix" # Create revision 1.5.

A conflict can result from a merge operation. If that happens, you should resolve it before committing the new revision. Sec-
tion 11.3.

If your source files contain keywords (Chapter 13), you might be getting more conflicts than strictly necessary. See Section 6.10,
for information on how to avoid this.

The checkout command also supports the -j branchname flag. The same effect as above could be achieved with this:

$ cvs checkout -j R1fix mod
$ cvs commit -m "Included RI1Ifix"

It should be noted that update -j tagname will also work but may not produce the desired result. Section 6.9, for more.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051

38/ 142

6.7 Merging from a branch several times

Continuing our example, the revision tree now looks like this:

e + S + S + S + T +
I 1.1 === 1.2 l===1 1.3 === 1.4 l====[1,5 | <- The main trunk
P=m=== + o= + Pem=== + Ppom=== + S +

! *

! *

! fommmmmm= s o= +
Branch R1fix -> +-—-! 1.2.2.1 !-——=1 1.2.2.2 !

fm——————=e + S e +

where the starred line represents the merge from the R1fix branch to the main trunk, as just discussed.

Now suppose that development continues on the R1fix branch:

Ppe=—== + S + === + Ppo==== + s +
| 1.1 === 1.2 l====0 1.3 l====] 1.4 l====[1.5 | <- The main trunk
Sp===== + === + e + Pp===== + === +
! *
| *
! fommmm=—=—= + e + fpm—————=—= +
Branch RIEdx =2 $===[L1.2:,2.,1 (===l 1.2:2.2 l=—=<=] 1.2,2.3 |
fm———————e + = + Smm——m———e +

and then you want to merge those new changes onto the main trunk. If you just use the cvs update -j R1fix m.c command
again, cvsnt will remember that you have previously merged any only merge the new changes. You can override this by using
the cvs update -b -j command, which will attempt to merge again the changes which you have already merged, which can have

undesirable side effects.

6.8 Merging differences between any two revisions

With two -j revision flags, the update (and checkout) command can merge the differences between any two revisions into

your working file.

$ cvs update -3 1.5 -j 1.3 backend.c

will undo all changes made between revision 1.3 and 1.5. Note the order of the revisions!

If you try to use this option when operating on multiple files, remember that the numeric revisions will probably be very different
between the various files. You almost always use symbolic tags rather than revision numbers when operating on multiple files.

Specifying two -j options can also undo file removals or additions. For example, suppose you have a file named filel which
existed as revision 1.1, and you then removed it (thus adding a dead revision 1.2). Now suppose you want to add it again, with

the same contents it had previously. Here is how to do it:

$ cvs update -j 1.2 —-j 1.1 filel
U filel

$ cvs commit -m test

Checking in filel;

/tmp/cvs—sanity/cvsroot/first-dir/filel,v <-- filel
new revision: 1.3; previous revision: 1.2
done

$

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 39/ 142

6.9 Merging can add or remove files

If the changes which you are merging involve removing or adding some files, update -j will reflect such additions or removals.
For example:

cvs update -A

touch a b ¢

cvs add a b ¢ ; cvs ci —-m "added" a b c
cvs tag -b branchtag

cvs update —-r branchtag

touch d ; cvs add d

rm a ; Cvs rm a

cvs ci —-m "added d, removed a"

cvs update -A

cvs update —jbranchtag

After these commands are executed and a cvs commit is done, file a will be removed and file d added in the main branch.

Note that using a single static tag (-j tagname) rather than a dynamic tag (-j branchname) to merge changes from a branch
will usually not remove files which were removed on the branch since cvsnt does not automatically add static tags to dead
revisions. The exception to this rule occurs when a static tag has been attached to a dead revision manually. Use the branch tag to
merge all changes from the branch or use two static tags as merge endpoints to be sure that all intended changes are propogated
in the merge.

6.10 Merging and keywords

If you merge files containing keywords (Chapter 13), you will normally get numerous conflicts during the merge, because the
keywords are expanded differently in the revisions which you are merging.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 40/ 142

Chapter 7

Recursive behavior

Almost all of the subcommands of cvsnt work recursively when you specify a directory as an argument. For instance, consider
this directory structure:

SHOME

|

+--tc

| \
+--CVS
| (internal cvsnt files)
+-—-Makefile
+—-backend.c
+-—-driver.c
+——frontend.c
+-—-parser.c

+—-—man

\ \

| F==CVS

| | (internal cvsnt files)
| F==TC, 1

\

+--testing
\
F==CVS
| (internal cvsnt files)
+-—testpgm.t
+-——test2.t

If te is the current working directory, the following is true:

* cvs update testing is equivalent to

cvs update testing/testpgm.t testing/test2.t

* cvs update testing man updates all files in the subdirectories

* cvs update . or just cvs update updates all files in the tec directory
If no arguments are given to update it will update all files in the current working directory and all its subdirectories. In other
words, . is a default argument to update. This is also true for most of the cvsnt subcommands, not only the update command.

The recursive behavior of the cvsnt subcommands can be turned off with the -1 option. Conversely, the -R option can be used to
force recursion if -l is specified in ~/.cvsre (Section A.3).

$ cvs update -1 # Don’t update files in subdirectories

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 41/142

Chapter 8

Adding, removing, and renaming files and direc-
tories

In the course of a project, one will often add new files. Likewise with removing or renaming, or with directories. The general
concept to keep in mind in all these cases is that instead of making an irreversible change you want cvsnt to record the fact that a
change has taken place, just as with modifying an existing file. The exact mechanisms to do this in cvsnt vary depending on the
situation.

8.1 Adding files to a directory

To add a new file to a directory, follow these steps.

* You must have a working copy of the directory. Section 1.3.1.
* Create the new file inside your working copy of the directory.

* Use cvs add £ilename to tell cvsnt that you want to version control the file. If the file contains binary data, specify -kb or
-kB (Chapter 10).

* Use cvs commit £ilename to actually check in the file into the repository. Other developers cannot see the file until you
perform this step.

You can also use the add command to add a new directory.
Unlike most other commands, the add command is not recursive. You cannot even type cvs add foo/bar! Instead, you have to

$ cd foo
$ cvs add bar

cvs add [-k kflag] [-m message] files ... Schedule files to be added to the repository. The files or directories specified with
add must already exist in the current directory. To add a whole new directory hierarchy to the source repository (for example,
files received from a third-party vendor), use the import command instead. Section A.18.

The added files are not placed in the source repository until you use commit to make the change permanent. Doing an add on
a file that was removed with the remove command will undo the effect of the remove, unless a commit command intervened.
Section 8.2, for an example.

The -k option specifies the default way that this file will be checked out; for more information see Section 13.4.

The -m option specifies a description for the file. This description appears in the history log (if it is enabled, Section B.21). It will
also be saved in the version history inside the repository when the file is committed. The log command displays this description.
The description can be changed using admin -t. Section A.7. If you omit the -m description flag, an empty string will be
used. You will not be prompted for a description.

For example, the following commands add the file backend.c to the repository:

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 42 /142

$ cvs add backend.c
$ cvs commit -m "Early version. Not yet compilable." backend.c

When you add a file it is added only on the branch which you are working on (Chapter 6). You can later merge the additions to
another branch if you want (Section 6.9).

8.2 Removing files

Directories change. New files are added, and old files disappear. Still, you want to be able to retrieve an exact copy of old
releases.

Here is what you can do to remove a file, but remain able to retrieve old revisions:

* Make sure that you have not made any uncommitted modifications to the file. Section 1.3.4, for one way to do that. You can
also use the status or update command. If you remove the file without committing your changes, you will of course not be
able to retrieve the file as it was immediately before you deleted it.

* Remove the file from your working copy of the directory. You can for instance use rm.
* Use cvs remove £ilename to tell cvsnt that you really want to delete the file.

* Use cvs commit £ilename to actually perform the removal of the file from the repository.

When you commit the removal of the file, cvsnt records the fact that the file no longer exists. It is possible for a file to exist on
only some branches and not on others, or to re-add another file with the same name later. cvsnt will correctly create or not create
the file, based on the -r and -D options specified to checkout or update.

cvs remove [options] files ... Schedule file(s) to be removed from the repository (files which have not already been removed
from the working directory are not processed). This command does not actually remove the file from the repository until you
commit the removal. For a full list of options, see Section A.33.

Here is an example of removing several files:

$ cd test

S rm x.cC

$ cvs remove

cvs remove: Removing

cvs remove: scheduling a.c for removal

cvs remove: scheduling b.c for removal

cvs remove: use 'cvs commit’ to remove these files permanently
$ cvs ci -m "Removed unneeded files"

cvs commit: Examining

cvs commit: Committing

As a convenience you can remove the file and cvs remove it in one step, by specifying the -f option. For example, the above
example could also be done like this:

$ cd test

$ cvs remove -f x.c

cvs remove: scheduling a.c for removal

cvs remove: scheduling b.c for removal

cvs remove: use 'cvs commit’ to remove these files permanently
$ cvs ci -m "Removed unneeded files"

cvs commit: Examining

cvs commit: Committing

If you execute remove for a file, and then change your mind before you commit, you can undo the remove with an add command.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 43/ 142

$ 1s

CVs ja.h oj.c

S rm oj.c

$ cvs remove oj.cC

cvs remove: scheduling oj.c for removal

cvs remove: use 'cvs commit’ to remove this file permanently
$ cvs add oj.c

U oj.c

cvs add: oj.c, version 1.1.1.1, resurrected

If you realize your mistake before you run the remove command you can use update to resurrect the file:

$ rm oj.c

$ cvs update oj.c

cvs update: warning: oj.c was lost
U oj.c

If you realize your mistake after running the commit command you can use add to resurrect the file:

$ cvs remove foo.c

cvs remove: scheduling foo.c for removal

cvs remove: use '‘cvs commit’ to remove these files permanently
$ cvs ci -m "Removed unneeded files"

cvs commit: Examining

cvs commit: Committing

$ cvs add foo.c

cvs add: foo.c, version 1.5, resurrected

U foo.c

cvs add: use ’‘cvs commit’ to add this file permanently
Scvs ci -m "Oops shouldn’t have deleted that..."

cvs commit: Examining

cvs commit: Committing

When you remove a file it is removed only on the branch which you are working on (Chapter 6). You can later merge the removals
to another branch if you want (Section 6.9).

8.3 Removing directories

In concept removing directories is somewhat similar to removing files--you want the directory to not exist in your current working
directories, but you also want to be able to retrieve old releases in which the directory existed.

The way that you remove a directory is to remove all the files in it. You don’t remove the directory itself; there is no way to do
that. Instead you specify the -P option to cvs update or cvs checkout, which will cause cvsnt to remove empty directories from
working directories. (Note that cvs export always removes empty directories.) Probably the best way to do this is to always
specify -P; if you want an empty directory then put a dummy file (for example .keepme) in it to prevent -P from removing it.

Note that -P is implied by the -r or -D options of checkout. This way cvsnt will be able to correctly create the directory or not
depending on whether the particular version you are checking out contains any files in that directory.

8.4 Moving and renaming files

Moving files to a different directory or renaming them is not difficult, but some of the ways in which this works may be non-
obvious. (Moving or renaming a directory is even harder. Section 8.5.).

The examples below assume that the file 01d is renamed to new.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 44 /142

8.4.1 The Normal way to Rename

The normal way to move a file is to issue a cvs rename command.

$ cvs rename old new
$ cvs commit -m "Renamed old to new"

This is the simplest way to move a file. It is not error prone, and it preserves the history of what was done. CVSNT clients can
retrieve the original name by checking out an older version of the repository.

This feature is only supported on CVSNT servers 2.0.55 and later.
Note that rename is still in testing at the time of writing, so if unsure use use one of the other methods below.

Note that rename information is a property of the directory, not the file. This behaviour is slightly non-obvious when you first
encounter it. For a rename to be stored in the repository a cvs commit must be issued at the directory level, and for a rename to
be picked up by other clients a cvs update must be issued at the directory level.

You can move a file to a different directory within a sandbox provided the destination directory is within the same server. In this
case to avoid confusion it is recommended to commit both directories at the same time (by committing from a common parent
directory).

8.4.2 The old way to Rename

If you are connected to a server that does not support versioned-renames, the way to move a file is to copy o1d to new, and then
issue the normal cvsnt commands to remove o1d from the repository, and add new to it.

$ mv old new

S cvs remove old

$ cvs add new

$ cvs commit -m "Renamed old to new" old new

Note that to access the history of the file you must specify the old or the new name, depending on what portion of the history you
are accessing. For example, cvs log o1d will give the log up until the time of the rename.

When new is committed its revision numbers will start again, usually at 1.1, so if that bothers you, use the -r rev option to
commit. For more information see Section 5.3.

8.4.3 Moving the history file

This method is more dangerous, since it involves moving files inside the repository. Read this entire section before trying it out!

S cd $CVSROOT/dir
S mv old,v new,Vv

Advantages:

* The log of changes is maintained intact.

¢ The revision numbers are not affected.
Disadvantages:

* Old releases cannot easily be fetched from the repository. (The file will show up as new even in revisions from the time before
it was renamed).

* There is no log information of when the file was renamed.

» Nasty things might happen if someone accesses the history file while you are moving it. Make sure no one else runs any of the
cvsnt commands while you move it.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 45/ 142

8.4.4 Copying the history file

This way also involves direct modifications to the repository. It is safe, but not without drawbacks.

Copy the rcs file inside the repository
cd $CVSROOT/dir

cp old,v new,v

Remove the old file

cd ~/dir

rm old

cvs remove old

cvs commit old

Remove all tags from new

cvs update new

cvs log new # Remember the non-branch tag names
cvs tag —-d tagl new

cvs tag —-d tag2 new

W W FHE= A W FHE= O A

By removing the tags you will be able to check out old revisions.

Advantages:

* Checking out old revisions works correctly, as long as you use -rtag and not -Ddate to retrieve the revisions.
* The log of changes is maintained intact.

¢ The revision numbers are not affected.
Disadvantages:

* You cannot easily see the history of the file across the rename.

8.5 Moving and renaming directories

The normal way to rename or move a directory is to rename or move each file within it as described in Section 8.4.2. Then check
out with the -P option, as described in Section 8.3.

If you really want to hack the repository to rename or delete a directory in the repository, you can do it like this:
1. Inform everyone who has a checked out copy of the directory that the directory will be renamed. They should commit all
their changes, and remove their working copies, before you take the steps below.

2. Rename the directory inside the repository.

$ cd $CVSROOT/parent-dir
$ mv old-dir new-dir

3. Fix the cvsnt administrative files, if necessary (for instance if you renamed an entire module).

4. Tell everyone that they can check out again and continue working.
If someone had a working copy the cvsnt commands will cease to work for him, until he removes the directory that disappeared
inside the repository.

It is almost always better to move the files in the directory instead of moving the directory. If you move the directory you are
unlikely to be able to retrieve old releases correctly, since they probably depend on the name of the directories.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 46/ 142

Chapter 9

History browsing

Once you have used cvsnt to store a version control history--what files have changed when, how, and by whom, there are a variety
of mechanisms for looking through the history.

9.1 Log messages

Whenever you commit a file you specify a log message.

To look through the log messages which have been specified for every revision which has been committed, use the cvs log
command (Section A.21).

9.2 The history database

You can use the history file (Section B.21) to log various cvsnt actions. To retrieve the information from the history file, use the
cvs history command (Section A.17).

Note: you can control what is logged to this file by using the LogHistory keyword in the CVSROOT/config file (Section B.25).

9.3 User-defined logging

You can customize cvsnt to log various kinds of actions, in whatever manner you choose. These mechanisms operate by executing
a script at various times. The script might append a message to a file listing the information and the programmer who created it,
or send mail to a group of developers, or, perhaps, post a message to a particular newsgroup. To log commits, use the loginfo
file (Section B.8). To log commits, checkouts, exports, and tags, respectively, you can also use the -i, -0, -e, and -t options in
the modules file. For a more flexible way of giving notifications to various users, which requires less in the way of keeping
centralized scripts up to date, use the cvs watch add command (Section 11.6.2); this command is useful even if you are not using
cvs watch on.

9.3.1 The taginfo file

The taginfo file defines programs to execute when someone executes a tag or rtag command. The taginfo file has the standard
form for administrative files (Appendix B), where each line is a regular expression followed by a command to execute. The
arguments passed to the command are, in order, the tagname, operation (add for tag, mov for tag -F, and del for tag -d),
repository. The standard input contains pairs of £ilename revision. A non-zero exit of the filter program will cause
the tag to be aborted.

Each line in the taginfo file consists of a regular expression and a command-line template. Each line can have any combination
of the following, in addition to those listed in the common syntax (Section B.4.1.)

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 47 /142

%p Directory name relative to the current root.
%m Message supplied on the command line.
%s List of files being tagged

%v List of versions being tagged

%b tag type

%0 tag operation

%t tag name

If no other options are specified, the default format string is %t %0 %r/%p % <{%s % v}
Here is an example of using taginfo to log tag and rtag commands. In the taginfo file put:

ALL /usr/local/cvsroot/CVSROOT/loggit

Where /usr/local/cvsroot/CVSROOQOT/loggit contains the following script:

#!/bin/sh
echo "$Q@" >>/home/kingdon/cvsroot/CVSROOT/taglog

9.4 Annotate command

cvs annotate [-fIR] [-r revl-D date] files ... For each file in £iles, print the head revision of the trunk, together with
information on the last modification for each line. For example:

$ cvs annotate ssfile
Annotations for ssfile

K*hk kK Kk hhkkkkkkk k%K
1.1 (mary 27-Mar-96): ssfile line 1
1.2 (joe 28-Mar—-96): ssfile line 2

The file ssfile currently contains two lines. The ssfile line 1 line was checked in by mary on March 27. Then, on March 28, joe
added a line ssfile line 2, without modifying the ssfile line 1 line. This report doesn’t tell you anything about lines which have
been deleted or replaced; you need to use cvs diff for that (Section A.13).

The options to cvs annotate are listed in Section A.8, and can be used to select the files and revisions to annotate. The options
are described in more detail in Section A.5.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 48/ 142

Chapter 10

Handling binary files

The most common use for cvsnt is to store text files. With text files, cvsnt can merge revisions, display the differences between
revisions in a human-visible fashion, and other such operations. However, if you are willing to give up a few of these abilities,
cvsnt can store binary files. For example, one might store a web site in cvsnt including both text files and binary images.

10.1 The issues with binary files

While the need to manage binary files may seem obvious if the files that you customarily work with are binary, putting them into
version control does present some additional issues.

One basic function of version control is to show the differences between two revisions. For example, if someone else checked in
a new version of a file, you may wish to look at what they changed and determine whether their changes are good. For text files,
cvsnt provides this functionality via the cvs diff command. For binary files, it may be possible to extract the two revisions and
then compare them with a tool external to cvsnt (for example, word processing software often has such a feature). If there is no
such tool, one must track changes via other mechanisms, such as urging people to write good log messages, and hoping that the
changes they actually made were the changes that they intended to make.

Another ability of a version control system is the ability to merge two revisions. For cvsnt this happens in two contexts. The first
is when users make changes in separate working directories (Chapter 11). The second is when one merges explicitly with the
update -j command (Chapter 6).

In the case of text files, cvsnt can merge changes made independently, and signal a conflict if the changes conflict. With binary
files, the best that cvsnt can do is present the two different copies of the file, and leave it to the user to resolve the conflict. The
user may choose one copy or the other, or may run an external merge tool which knows about that particular file format, if one
exists. Note that having the user merge relies primarily on the user to not accidentally omit some changes, and thus is potentially
erTor prone.

If this process is thought to be undesirable, the best choice may be to avoid merging. To avoid the merges that result from separate
working directories, see the discussion of reserved checkouts (file locking) in Chapter 11. To avoid the merges resulting from
branches, restrict use of branches.

10.2 How to store binary files

There are two issues with using cvsnt to store binary files. The first is that cvsnt by default converts line endings between the
canonical form in which they are stored in the repository (linefeed only), and the form appropriate to the operating system in use
on the client (for example, carriage return followed by line feed for Windows).

The second is that a binary file might happen to contain data which looks like a keyword (Chapter 13), so keyword expansion
must be turned off.

The third is that storing differences (deltas) between binary files can be very inefficient.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 49/ 142

The -kb option available with some cvsnt commands insures that neither line ending conversion nor keyword expansion will be
done.

Here is an example of how you can create a new file using the -kb flag:

S echo ’"Id’ > kotest
$ cvs add -kb -m"A test file" kotest
$ cvs ci —m"First checkin; contains a keyword" kotest

If a file accidentally gets added without -kb, one can use the cvs admin command to recover. For example:

echo ’Id’ > kotest

cvs add —m"A test file" kotest

cvs ci —m"First checkin; contains a keyword" kotest
cvs update —-kb kotest

For non-unix systems:

Copy in a good copy of the file from outside CVS
cvs commit —-fm "make it binary" kotest

W #H= H= 0 O

When you check in the file kotest the file is not preserved as a binary file, because you did not check it in as a binary file. The
cvs update -kb command sets the current keyword substitution method for this file, but it does not alter the working copy of the
file that you have. If you need to cope with line endings (that is, you are using cvsnt on a non-unix system), then you need to
check in a new copy of the file, as shown by the cvs commit command above.

Older versions of CVS/CVSNT didn’t properly version control the expansion option, and had an admin -kb option.

You can also set a default for whether cvs add and cvs import treat a file as binary based on its name; for example you could say
that files who names end in .exe are binary. Section B.3. There is currently no way to have cvsnt detect whether a file is binary
based on its contents. The main difficulty with designing such a feature is that it is not clear how to distinguish between binary
and non-binary files, and the rules to apply would vary considerably with the operating system.

The -kB solves the inefficiency problem by using a special binary delta algorithm to store the files. The function is similar to -kb
except it is more efficient, and some functions that rely on text deltas, such as cvs annotate do not work with it.

Normally CVS assumes that every file (whether binary or not) is a text file of some sort. This makes sense for most files that you
would normally use during development, and the storage of such files is highly efficient.

However, if you are storing pure binary files (libraries, or perhaps Word documents) it is very inefficient to treat them as text
files. CVSNT solves this problem with the -kB option. This tells CVSNT to switch to an alternate algorithm to store such files.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 50/142

Chapter 11

Multiple developers

When more than one person works on a software project things often get complicated. Often, two people try to edit the same
file simultaneously. One solution, known as file locking or reserved checkouts, is to allow only one person to edit each file at a
time. This is the only solution with some version control systems, including rcs, sccs, visual studio, pvcs etc. Currently the usual
way to get reserved checkouts with cvsnt is the setting the file to have the cvsnt expansion keyword -kx or -ke (Section 13.4) and
using the command cvs edit (Section A.14.1). This is very nicely integrated into cvsnt and can work with the watch features,
described below.

The default model with cvsnt is known as unreserved checkouts. In this model, developers can edit their own working copy of a
file simultaneously. The first person that commits his changes has no automatic way of knowing that another has started to edit
it. Others will get an error message when they try to commit the file. They must then use cvsnt commands to bring their working
copy up to date with the repository revision. This process is almost automatic.

cvsnt also supports mechanisms which facilitate various kinds of communication, without actually enforcing rules like reserved
checkouts do.

The rest of this chapter describes how these various models work, and some of the issues involved in choosing between them.

11.1 File status

Based on what operations you have performed on a checked out file, and what operations others have performed to that file in
the repository, one can classify a file in a number of states. The states, as reported by the status command, are:

Up-to-date The file is identical with the latest revision in the repository for the branch in use.
Locally Modified You have edited the file, and not yet committed your changes.

Locally Added You have added the file with add, and not yet committed your changes.

Locally Removed You have removed the file with remove, and not yet committed your changes.

Needs Checkout Someone else has committed a newer revision to the repository. The name is slightly misleading; you will
ordinarily use update rather than checkout to get that newer revision.

Needs Patch Like Needs Checkout, but the cvsnt server will send a patch rather than the entire file. Sending a patch or sending
an entire file accomplishes the same thing.

Needs Merge Someone else has committed a newer revision to the repository, and you have also made modifications to the file.

File had conflicts on merge This is like Locally Modified, except that a previous update command gave a conflict. If you have
not already done so, you need to resolve the conflict as described in Section 11.3.

Unknown cvsnt doesn’t know anything about this file. For example, you have created a new file and have not run add.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 51/142

To help clarify the file status, status also reports the Working revision which is the revision that the file in the working directory
derives from, and the Repository revision which is the latest revision in the repository for the branch in use.

The options to status are listed in Section A.37. For information on its Sticky tag and Sticky date output, see Section 5.11. For
information on its Sticky options output, see the -k option in Section A.40.1.

You can think of the status and update commands as somewhat complementary. You use update to bring your files up to date,
and you can use status to give you some idea of what an update would do (of course, the state of the repository might change
before you actually run update). In fact, if you want a command to display file status in a more brief format than is displayed by
the status command, you can invoke

$ cvs -n —-gq update

The -n option means to not actually do the update, but merely to display statuses; the -q option avoids printing the name of each
directory. For more information on the update command, and these options, see Section A.40.

11.2 Bringing a file up to date

When you want to update or merge a file, use the update command. For files that are not up to date this is roughly equivalent to
a checkout command: the newest revision of the file is extracted from the repository and put in your working directory.

Your modifications to a file are never lost when you use update. If no newer revision exists, running update has no effect. If you
have edited the file, and a newer revision is available, cvsnt will merge all changes into your working copy.

For instance, imagine that you checked out revision 1.4 and started editing it. In the meantime someone else committed revision
1.5, and shortly after that revision 1.6. If you run update on the file now, cvsnt will incorporate all changes between revision 1.4
and 1.6 into your file.

If any of the changes between 1.4 and 1.6 were made too close to any of the changes you have made, an overlap occurs. In such
cases a warning is printed, and the resulting file includes both versions of the lines that overlap, delimited by special markers.
Section A.40, for a complete description of the update command.

11.3 Conflicts example

Suppose revision 1.4 of driver.c contains this:

#include <stdio.h>

void main ()

{

parse () ;

if (nerr == 0)
gencode () ;

else

fprintf (stderr, "No code generated.\n");
exit (nerr == 0 2 0 : 1);

Revision 1.6 of driver.c contains this:

#include <stdio.h>

int main(int argc,
char xxargv)
{
parse () ;
if (argc != 1)
{
fprintf (stderr, "tc: No args expected.\n");

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 52/142

exit (1) ;
}
if (nerr == 0)
gencode () ;
else

fprintf (stderr, "No code generated.\n");
exit (! !'nerr);

Your working copy of driver.c, based on revision 1.4, contains this before you run cvs update:

#include <stdlib.h>
#include <stdio.h>

volid main ()

{

init_scanner();

parse () ;
if (nerr == 0)
gencode () ;
else
fprintf (stderr, "No code generated.\n");
exit (nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

You run cvs update:

$ cvs update driver.c

rcs file: /usr/local/cvsroot/yoyodyne/tc/driver.c,v
retrieving revision 1.4

retrieving revision 1.6

Merging differences between 1.4 and 1.6 into driver.c
rcsmerge warning: overlaps during merge

cvs update: conflicts found in driver.c

C driver.c

cvsnt tells you that there were some conflicts. Your original working file is saved unmodified in .#driver.c.1.4. The new version
of driver.c contains this:

#include <stdlib.h>
#include <stdio.h>

int main(int argc,
char xxargv)

init_scanner () ;
parse () ;
if (argc != 1)
{
fprintf (stderr, "tc: No args expected.\n");
exit (1) ;
}
if (nerr == 0)
gencode () ;
else
fprintf (stderr, "No code generated.\n");
<<<<<<< driver.c
exit (nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

exit (! !'nerr);
>>>>>>> 1.6
}

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 537142

Note how all non-overlapping modifications are incorporated in your working copy, and that the overlapping section is clearly
marked with <<<<<<<, ======= and >>>>>>>.

You resolve the conflict by editing the file, removing the markers and the erroneous line. Suppose you end up with this file:

#include <stdlib.h>
#include <stdio.h>

int main(int argc,
char xxargv)

init_scanner () ;
parse () ;
if (argc != 1)
{
fprintf (stderr, "tc: No args expected.\n");

exit (1);
}
if (nerr == 0)
gencode () ;
else

fprintf (stderr, "No code generated.\n");
exit (nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE) ;

You can now go ahead and commit this as revision 1.7.

$ cvs commit -m "Initialize scanner. Use symbolic exit values." driver.c
Checking in driver.c;

/usr/local/cvsroot/yoyodyne/tc/driver.c,v <-—- driver.c

new revision: 1.7; previous revision: 1.6

done

For your protection, cvsnt will refuse to check in a file if a conflict occurred and you have not resolved the conflict. Currently to
resolve a conflict, you must change the timestamp on the file. In previous versions of cvsnt, you also needed to insure that the
file contains no conflict markers. Because your file may legitimately contain conflict markers (that is, occurrences of >>>>>>>
at the start of a line that don’t mark a conflict), the current version of cvsnt will print a warning and proceed to check in the file.

If you use release 1.04 or later of pcl-cvs (a gnu Emacs front-end for cvsnt) you can use an Emacs package called emerge to help
you resolve conflicts. See the documentation for pcl-cvs.

11.4 Informing others about commits

It is often useful to inform others when you commit a new revision of a file. The -i option of the modules file, or the loginfo file,
can be used to automate this process. Section B.1. Section B.8. You can use these features of cvsnt to, for instance, instruct cvsnt
to mail a message to all developers, or post a message to a local newsgroup.

11.5 Several developers simultaneously attempting to run CVS

If several developers try to run cvsnt at the same time, one may get the following message:

[11:43:23] waiting for bach’s lock in /usr/local/cvsroot/foo

cvsnt will try again every second, and either continue with the operation or print the message again, if it still needs to wait. If a
lock seems to stick around for an undue amount of time, find the person holding the lock and ask them about the cvs command
they are running. If they aren’t running a cvs command, and you are not running the lockserver (see Section 3.11, look in the
repository directory mentioned in the message and remove files which they own whose names start with #cvs.rfl, #cvs.wfl, or
#evs.dock.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 547142

Note that these locks are to protect cvsnt’s internal data structures and have no relationship to the word lock in the sense used by
rcs--which refers to reserved checkouts (Chapter 11).

Any number of people can be reading from a given repository at a time; only when someone is writing a file do the locks prevent
other people from reading or writing.

Checkouts on cvsnt are atomic which means:

If someone commits some changes in one cvs command,
then an update by someone else will either get all the
changes, or none of them.

By default atomic checkouts occur across an entire checkout, (provided the lockserver is running), but atomic commits are only
atomic at the file level. For example, given the files

a/one.c
a/two.c
b/three.c
b/four.c

if someone runs

cvs ci a/two.c b/three.c

and someone else runs cvs update at the same time, the person running update will either get all of the changes, or none of
them. If however, the person running cvs commit suffers a power failure in the middle of the commit, it is possible that only one
of the files will be updated.

11.6 Mechanisms to track who is editing files

For many groups, use of cvsnt in its default mode is perfectly satisfactory. Users may sometimes go to check in a modification
only to find that another modification has intervened, but they deal with it and proceed with their check in. Other groups prefer
to be able to know who is editing what files, so that if two people try to edit the same file they can choose to talk about who is
doing what when rather than be surprised at check in time. The features in this section allow such coordination, while retaining
the ability of two developers to edit the same file at the same time.

For maximum benefit developers should use cvs edit (not chmod) to make files read-write to edit them, and cvs release (not rm)
to discard a working directory which is no longer in use, but cvsnt is not able to enforce this behavior.

11.6.1 Setting up cooperative edits
cvs watch ro [-IR] files ... Specify that developers should run cvs edit before editing files. cvsnt will create working
copies of £iles read-only, to remind developers to run the cvs edit command before working on them.

If files includes the name of a directory, cvsnt sets up cooperative edits for all files added to the corresponding repository
directory, and sets a default for files added in the future; this allows the user to set notification policies on a per-directory basis.
The contents of the directory are processed recursively, unless the -1 option is given. The -R option can be used to force recursion
if the -1 option is set in ~/.cvsrc (Section A.3).

If £iles is omitted, it defaults to the current directory.

cvs watch rw [-IR] files ... Do not create £iles read-only on checkout; thus, developers will not be reminded to use cvs
edit and cvs unedit.

The £iles and options are processed as for cvs watch ro.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 557142

11.6.2 Telling CVS to notify you when someone modifies a file

You can tell cvsnt that you want to receive notifications about various actions taken on a file. You can do this without using cvs
watch ro for the file, however generally you will want to use cvs watch ro, so that developers are reminded to use the cvs edit
command.

cvs watch add [-a action] [-IR] files ... Add the current user to the list of people to receive notification of work done on
files.

The -a option specifies what kinds of events cvsnt should notify the user about. action is one of the following:

edit Another user has applied the cvs edit command (described below) to a file.

unedit Another user has applied the cvs unedit command (described below) or the cvs release command to a file, or has deleted
the file and allowed cvs update to recreate it.

commit Another user has committed changes to a file.
all All of the above.

none None of the above. (This is useful with cvs edit, described below.)

The -a option may appear more than once, or not at all. If omitted, the action defaults to all.
The £iles and options are processed as for the cvs watch commands.

cvs watch remove [-a action] [-IR] files ... Remove a notification request established using cvs watch add; the arguments
are the same. If the -a option is present, only watches for the specified actions are removed.

When the conditions exist for notification, cvsnt calls the notify administrative file. Edit notify as one edits the other adminis-
trative files (Section 2.4). This file follows the usual conventions for administrative files (Section B.4.1), where each line is a
regular expression followed by a command to execute. The command should contain a single occurrence of %s which will be
replaced by the user to notify; the rest of the information regarding the notification will be supplied to the command on standard
input. A common thing to put in the notify file is the single line:

ALL mail %s —-s "CVS notification for bug %$b"

This causes users to be notified by electronic mail (assuming the command ’mail’ exists).

Note that if you set this up in the straightforward way, users receive notifications on the server machine. One could of course
write a notify script which directed notifications elsewhere, but to make this easy, cvsnt allows you to associate a notification
address for each user. To do so create a file users in CVSROOT with a line for each user in the format user:value. Then
instead of passing the name of the user to be notified to notify, cvsnt will pass the value (normally an email address on some
other machine).

CVSNT does not notify you for your own changes. Currently this check is done based on whether the user name of the person
taking the action which triggers notification matches the user name of the person getting notification. In fact, in general, the
watches features only track one edit by each user. It probably would be more useful if watches tracked each working directory
separately, so this behavior might be worth changing.

You can also pass information about the notification to the script, using the following substitution variables:
%s user being notified, or email (see above).

%D bug being edited.

% m reason for edit as supplied by user.

%d date and time of edit.

%u username of user performing the unedit (may not be the same as %s).

%t tag or branch being edited.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 56 /142

11.6.3 How to edit a file which is being watched

Since a file which is being watched is checked out read-only, you cannot simply edit it. To make it read-write, and inform others
that you are planning to edit it, use the cvs edit command. Some systems call this a checkout, but cvsnt uses that term for
obtaining a copy of the sources (Section 1.3.1), an operation which those systems call a get or a fetch.

cvs edit [options] files ... Prepare to edit the working files files. cvsnt makes the £iles read-write, and notifies users
who have requested edit notification for any of files.

The cvs edit command accepts the same options as the cvs watch add command, and establishes a temporary watch for the
user on files; cvsnt will remove the watch when files are unedited or committed. If the user does not wish to receive
notifications, she should specify -a none.

The £iles and options are processed as for the cvs watch commands.

If the -c option is given, then the file is checked for existing editors before the edit can proceed. In this way a reasonable facsimile
of ’reserved edits’ can be achieved (note however this is a suboptimal way to use cvsnt).

If the -x is given, then the edit is marked as exclusive on the server, and other users will be prevented from creating further edits.
This option will also prevent commits to the file by their users. (Implies -c).

The -z option stores the edited base revision in a compressed form. This is useful if you are using an IDE which tends to pick up
the base revisions while searching files. Its also saves quite a bit of disk space on large edits.

Normally edits apply only to the branch that you are currently using. The -w causes the edit to apply to all branches within the
file (which is the behaviour for pre-2.0.55 CVSNT).

The -b marks this edit as belonging to a specific bug. This information is stored and also sent to the CVSROOT/notify script.
The -m sets a reason message for this edit. This can be processed by the CVSROOT/notify script.

Normally when you are done with a set of changes, you use the cvs commit command, which checks in your changes and returns
the watched files to their usual read-only state. But if you instead decide to abandon your changes, or not to make any changes,
you can use the cvs unedit command.

cvs unedit [-IR] [-r] [-u user] [-w] [-b bug] [-m message] [files...]

Abandon work on the working files £iles, and revert them to the repository versions on which they are based. CVSNT by
default also makes the files read only. Use the -w option to override this.. CVSNT then notifies users who have requested unedit
notification for any of files.

The £iles and options are processed as for the cvs watch commands.

If watches are not in use, the unedit command probably does not work, and the way to revert to the repository version is to
remove the file and then use cvs update to get a new copy. The meaning is not precisely the same; removing and updating may
also bring in some changes which have been made in the repository since the last time you updated.

The reason message passed to this function is passed directly to the CVSROOT/Notify script. If the -b option is used then only
those files edited under a specific bug are unedited.

Repository administrators can use the "unedit others’ option -u. Only use this as a last resort as it only does the server side of the
unedit.

11.6.4 Information about who is watching and editing

cvs watchers [-IR] files ... List the users currently watching changes to £i1es. The report includes the files being watched,
and the mail address of each watcher.

The £iles and options are processed as for the cvs watch commands.

cvs editors [-IR] [-a] files ... List the users currently working on £iles. The report includes the mail address of each user,
the time when the user began working with the file, and the host and path of the working directory containing the file.

The f£iles and options are processed as for the cvs watch commands.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 577142

11.6.5 Using watches with old versions of CVS

If you use the watch features on a repository, it creates CVS directories in the repository and stores the information about watches
in that directory. If you attempt to use cvsnt 1.6 or earlier with the repository, you get an error message such as the following (all
on one line):

cvs update: cannot open CVS/Entries for reading:
No such file or directory

and your operation will likely be aborted. To use the watch features, you must upgrade all copies of cvsnt which use that
repository in local or server mode. If you cannot upgrade, use the watch off and watch remove commands to remove all
watches, and that will restore the repository to a state which cvsnt 1.6 can cope with.

11.7 Choosing between reserved or unreserved checkouts

Reserved and unreserved checkouts each have pros and cons. Let it be said that a lot of this is a matter of opinion or what works
given different groups’ working styles, but here is a brief description of some of the issues. There are many ways to organize a
team of developers. cvsnt does not try to enforce a certain organization. It is a tool that can be used in several ways.

Reserved checkouts can be very counter-productive. If two persons want to edit different parts of a file, there may be no reason
to prevent either of them from doing so. Also, it is common for someone to take out a lock on a file, because they are planning
to edit it, but then forget to release the lock.

People, especially people who are familiar with reserved checkouts, often wonder how often conflicts occur if unreserved check-
outs are used, and how difficult they are to resolve. The experience with many groups is that they occur rarely and usually are
relatively straightforward to resolve.

The rarity of serious conflicts may be surprising, until one realizes that they occur only when two developers disagree on the
proper design for a given section of code; such a disagreement suggests that the team has not been communicating properly in
the first place. In order to collaborate under any source management regimen, developers must agree on the general design of the
system; given this agreement, overlapping changes are usually straightforward to merge.

In some cases unreserved checkouts are clearly inappropriate. If no merge tool exists for the kind of file you are managing (for
example word processor files or files edited by Computer Aided Design programs), and it is not desirable to change to a program
which uses a mergeable data format, then resolving conflicts is going to be unpleasant enough that you generally will be better
off to simply avoid the conflicts instead, by using reserved checkouts.

The watches features described above in Section 11.6 can be considered to be an intermediate model between reserved checkouts
and unreserved checkouts. When you go to edit a file, it is possible to find out who else is editing it. And rather than having
the system simply forbid both people editing the file, it can tell you what the situation is and let you figure out whether it is a
problem in that particular case or not. Therefore, for some groups it can be considered the best of both the reserved checkout and
unreserved checkout worlds.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 58/142

Chapter 12

Revision management

If you have read this far, you probably have a pretty good grasp on what cvsnt can do for you. This chapter talks a little about
things that you still have to decide.

If you are doing development on your own using cvsnt you could probably skip this chapter. The questions this chapter takes up
become more important when more than one person is working in a repository.

12.1 When to commit?

Your group should decide which policy to use regarding commits. Several policies are possible, and as your experience with
cvsnt grows you will probably find out what works for you.

If you commiit files too quickly you might commit files that do not even compile. If your partner updates his working sources to
include your buggy file, he will be unable to compile the code. On the other hand, other persons will not be able to benefit from
the improvements you make to the code if you commit very seldom, and conflicts will probably be more common.

It is common to only commit files after making sure that they can be compiled. Some sites require that the files pass a test suite.
Policies like this can be enforced using the commitinfo file (Section B.6), but you should think twice before you enforce such a
convention. By making the development environment too controlled it might become too regimented and thus counter-productive
to the real goal, which is to get software written.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 59/142

Chapter 13

Keyword substitution

As long as you edit source files inside a working directory you can always find out the state of your files via cvs status and cvs
log. But as soon as you export the files from your development environment it becomes harder to identify which revisions they
are.

cvsnt can use a mechanism known as keyword substitution (or keyword expansion) to help identifying the files. Embedded strings
of the form $keyword$ and $keyword:...$ in a file are replaced with strings of the form $keyword:value$ whenever you
obtain a new revision of the file.

13.1 Keyword List

This is a list of the keywords. This list may be altered or augmented by the use of the keywords control file (seeSection B.17).

$Author$ The login name of the user who checked in the revision.

$Branch$ The name of the branch that the revision is a member of.

$CommitId$ The Commit (or Session) identifier of the commit that generated this revision.
$Date$ The date and time (UTC) the revision was checked in.

$Header$ A standard header containing the full pathname of the rcs file, the revision number, the date (UTC), the author, the
state, and the locker (if locked). Files will normally never be locked when you use cvsnt.

$RCSHeader$ A standard header containing the relative pathname of the rcs file, the revision number, the date (UTC), the
author, the state, and the locker (if locked). Files will normally never be locked when you use cvsnt.

Id Same as $Header$, except that the rcs filename is without a path.

$Name$ Tag name used to check out this file. The keyword is expanded only if one checks out with an explicit tag name. For
example, when running the command cvs co -r first, the keyword expands to Name: first.

$Locker:$ The login name of the user who locked the revision (empty if not locked, which is the normal case unless cvs admin
-l is in use). This keyword has little meaning under cvsnt.

Log The log message supplied during commit, preceded by a header containing the rcs filename, the revision number, the
author, and the date (UTC). Existing log messages are not replaced. Instead, the new log message is inserted after Log.
Each new line is prefixed with the same string which precedes the $Log keyword. For example, if the file contains

/+ Here is what people have been up to:

*

* $Log: foo.txt,v $

*+ Revision 1.1 1997/01/03 14:23:51 joe
* Add the superfrobnicate option
*
*

/

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 60/142

then additional lines which are added when expanding the $Log keyword will be preceded by * . Unlike previous versions
of cvsnt and rcs, the comment leader from the rcs file is not used. The $Log keyword is useful for accumulating a complete
change log in a source file, but for several reasons it can be problematic. Section 13.5.

$resfile$ The name of the res file without a path.
$Revision$ The revision number assigned to the revision.
$Source$ The full pathname of the res file.

$State$ The state assigned to the revision. States can be assigned with cvs admin -s--see Section A.7.1.

13.2 Using keywords

To include a keyword string you simply include the relevant text string, such as Id, inside the file, and commit the file. cvsnt
will automatically expand the string as part of the commit operation.

It is common to embed the Id string in the source files so that it gets passed through to generated files. For example, if you
are managing computer program source code, you might include a variable which is initialized to contain that string. Or some
C compilers may provide a #pragma ident directive. Or a document management system might provide a way to pass a string
through to generated files.

The ident command (which is part of the rcs package) can be used to extract keywords and their values from a file. This can be
handy for text files, but it is even more useful for extracting keywords from binary files.

$ ident samp.c
samp.c:
$1d$
$ gcc samp.c
$ ident a.out
a.out:
$Id: cvs.dbk,v 1.1.2.1 2004/04/16 14:14:42 tmh Exp $

Sccs is another popular revision control system. It has a command, what, which is very similar to ident and used for the same
purpose. Many sites without rcs have sccs. Since what looks for the character sequence @(#) it is easy to include keywords that
are detected by either command. Simply prefix the keyword with the magic sccs phrase, like this:

static char xid="@ (#) $Ids";

13.3 Avoiding substitution

Keyword substitution has its disadvantages. Sometimes you might want the literal text string $Author$ to appear inside a file
without cvsnt interpreting it as a keyword and expanding it into something like $Author$.

There is unfortunately no way to selectively turn off keyword substitution. You can use -ko (Section 13.4) to turn off keyword
substitution entirely.

In many cases you can avoid using keywords in the source, even though they appear in the final product. For example, the source
for this manual contains $@asis{}Author$ whenever the text $Author$ should appear. In nroff and troff you can embed the
null-character \& inside the keyword for a similar effect.

13.4 Substitution modes

Keyword substitution modes are stored for each version of a file. When you commit a new revision that version will be stored
exactly as it is in the sandbox, including the substitution mode.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 61/142

You can override the substitution mode by using the -k option to cvs add, -k or -A options to cvs checkout or cvs update. cvs
diff also has a -k option. For some examples, see Chapter 10, and Section 6.10.

The cvs update and cvs checkout commands allow you to modify existing substitution modes without overwriting the existing
ones. This is done by prefixing the mode with *+ (for add) or ’-’ (for remove). For example to switch off keyword substitution
for all files in a subtree:

$ cvs update —-k+o
$ cvs commit —-fm "Change substitution mode"

The modes available are defined by combining an optional encoding with a series of options.

Some combinations were not available on older CVS versions so be careful if you want to access your repository from older
clients. The CVSNT server will automatically downgrade some of these options if an older client fetches a file.

Encodings:

t Treat the file as a text file. This is the default setting if no encoding is specified.
MBCS character sets that don’t change the behaviour of CR/LF and NULL should also work in this mode. eg. Shift-JIS
and EUC.

b Treat the file as binary. No interpretation is done of the contents and they are stored verbatim. Be default no keyword expansion
is done. Binary files are considered non-mergable by CVS.

B Treat the file as binary. No interpretation is done of the contents and they are stored verbatim. Be default no keyword
expansion is done. Binary files are considered non-mergable by CVS. In addition, an alternate storage algorithm is used
that is optimised for storage of binary files.

u Treat the file as Unicode. The file will be checked in/out in UCS-2 (or UTF-16) encoding and internally stored as UTF-8 by
the server.

{...} Use an extended encoding. Any encoding supported by the client-side iconv library can be used, however beware of mis-
matches between clients (the Win32 version does not currently support EBCIDIC encodings for example). The following
list will work on all platforms that are using Unicode-capable CVSNT:
ucs2le, utfl6le Little-endian UCS-2 without BOM.
ucs2be, utfl6be Big-endian UCS-2 without BOM.
ucs2le_bom, utfl6le_bom Little-endian UCS-2 with BOM.
ucs2be_bom, utfl6be_bom Big-endian UCS-2 with BOM.

Flags:

¢ Enforce cooperative edits (edit -c) for the file.
x Enforce reserved (ie: exclusive) edit (edit -x) for the file.

k Preserve the keyword string (default). When combined with the v flag this generates results using the default form, e.g.
$Revision$ for the Revision keyword. On its own it produces output with no keywords expanded.

v Generate keyword values for keyword strings. Normally paired with the k option. If it is used on its own the effect is to strip
keywords from the output - for example, for the Revision keyword, generate the string 5.7 instead of $Revision: 1.1.2.1$.
This can help generate files in programming languages where it is hard to strip keyword delimiters like $Revision$ from
a string. However, further keyword substitution cannot be performed once the keyword names are removed, so this option
should be used with care.

1 Insert the lockers name if the given revision is currently locked. The locker’s name is only relevant if cvs admin -1 is in use.

s File is never considered modified on the client. A normal commit will never commit this file, unless -f is used to force it. Use
with care, and for files that change infrequently, since local changes will be lost on update.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 62/142

1 Unversioned. Only ever keep a single revision in the repository. History is lost, and the file is merely kept as the latest copy.
Only one branch (HEAD) ever exists and an update of any revision will return the single revision.

L When checking out, always create a file with Unix line endings (LF).
D When checking out, always create a file with Dos/Windows line endings (CR/LF).
M When checking out, always create a file with Mac line endings (CR)

o Generate the old keyword string, present in the working file just before it was checked in. For example, for the Revision
keyword, generate the string $Revision: 1.1.2.1;$ instead of $Revision$ if that is how the string appeared when the file
was checked in.

z Compress the files and deltas when they are stored. This sacrifices speed for disk space - only use if disk space is at a premium.

13.5 Log

The Log keyword is somewhat controversial. As long as you are working on your development system the information is
easily accessible even if you do not use the Log keyword--just do a cvs log. Once you export the file the history information
might be useless anyhow.

A more serious concern is that cvsnt is not good at handling Log entries when a branch is merged onto the main trunk. Conflicts
often result from the merging operation.

People also tend to "fix" the log entries in the file (correcting spelling mistakes and maybe even factual errors). If that is done
the information from cvs log will not be consistent with the information inside the file. This may or may not be a problem in real
life.

It has been suggested that the Log keyword should be inserted last in the file, and not in the files header, if it is to be used at
all. That way the long list of change messages will not interfere with everyday source file browsing.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 63/142

Chapter 14

Tracking third-party sources

If you modify a program to better fit your site, you probably want to include your modifications when the next release of the
program arrives. cvsnt can help you with this task.

In the terminology used in cvsnt, the supplier of the program is called a vendor. The unmodified distribution from the vendor is
checked in on its own branch, the vendor branch. cvsnt reserves branch 1.1.1 for this use.

When you modify the source and commit it, your revision will end up on the main trunk. When a new release is made by the
vendor, you commit it on the vendor branch and copy the modifications onto the main trunk.

Use the import command to create and update the vendor branch. When you import a new file, the vendor branch is made the
“head’ revision, so anyone that checks out a copy of the file gets that revision. When a local modification is committed it is placed
on the main trunk, and made the “head’ revision.

14.1 Importing for the first time

Use the import command to check in the sources for the first time. When you use the import command to track third-party
sources, the vendor tag and release tags are useful. The vendor tag is a symbolic name for the branch (which is always 1.1.1,
unless you use the -b branch flag--see Section 14.6.). The release tags are symbolic names for a particular release, such as
FSF_0_04.

Suppose you have the sources to a program called wdiff in a directory wdiff-0.04, and are going to make private modifications
that you want to be able to use even when new releases are made in the future. You start by importing the source to your
repository:

$ cd wdiff-0.04
$ cvs import -m "Import of FSF v. 0.04" fsf/wdiff FSF_DIST WDIFF_0_04

The vendor tag is named FSF_DIST in the above example, and the only release tag assigned is WDIFF_0_04.

14.2 Updating with the import command

When a new release of the source arrives, you import it into the repository with the same import command that you used to set
up the repository in the first place. The only difference is that you specify a different release tag this time.

$ tar xfz wdiff-0.05.tar.gz
$ cd wdiff-0.05
$ cvs import -m "Import of FSF v. 0.05" fsf/wdiff FSF_DIST WDIFF_0_05

For files that have not been modified locally, the newly created revision becomes the head revision. If you have made local
changes, import will warn you that you must merge the changes into the main trunk, and tell you to use checkout -j to do so.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 64/142

$ cvs checkout —-JFSF_DIST:yesterday -JFSF_DIST wdiff

The above command will check out the latest revision of wdiff, merging the changes made on the vendor branch FSF_DIST since
yesterday into the working copy. If any conflicts arise during the merge they should be resolved in the normal way (Section 11.3).
Then, the modified files may be committed.

Using a date, as suggested above, assumes that you do not import more than one release of a product per day. If you do, you can
always use something like this instead:

$ cvs checkout —-JWDIFF_0_04 —-jWDIFF_0_05 wdiff

In this case, the two above commands are equivalent.

14.3 Reverting to the latest vendor release

You can also revert local changes completely and return to the latest vendor release by changing the “head’ revision back to the
vendor branch on all files. For example, if you have a checked-out copy of the sources in ~/work.d/wdiff, and you want to revert
to the vendor’s version for all the files in that directory, you would type:

$ cd ~/work.d/wdiff
$ cvs admin -bWDIFF .

You must specify the -bWDIFF without any space after the -b. Section A.7.1.

14.4 How to handle binary files with cvs import

Use the -k wrapper option to tell import which files are binary. Section B.3.

14.5 How to handle keyword substitution with cvs import

The sources which you are importing may contain keywords (Chapter 13). For example, the vendor may use cvsnt or some
other system which uses similar keyword expansion syntax. If you just import the files in the default fashion, then the keyword
expansions supplied by the vendor will be replaced by keyword expansions supplied by your own copy of cvsnt. It may be more
convenient to maintain the expansions supplied by the vendor, so that this information can supply information about the sources
that you imported from the vendor.

To maintain the keyword expansions supplied by the vendor, supply the -ko option to cvs import the first time you import the
file. This will turn off keyword expansion for that file entirely, so if you want to be more selective you’ll have to think about what
you want and use the -k option to c¢vs update or cvs admin as appropriate.

14.6 Multiple vendor branches

All the examples so far assume that there is only one vendor from which you are getting sources. In some situations you might
get sources from a variety of places. For example, suppose that you are dealing with a project where many different people and
teams are modifying the software. There are a variety of ways to handle this, but in some cases you have a bunch of source trees
lying around and what you want to do more than anything else is just to all put them in cvsnt so that you at least have them in
one place.

For handling situations in which there may be more than one vendor, you may specify the -b option to cvs import. It takes as an
argument the vendor branch to import to. The default is -b 1.1.1.

For example, suppose that there are two teams, the red team and the blue team, that are sending you sources. You want to import
the red team’s efforts to branch 1.1.1 and use the vendor tag RED. You want to import the blue team’s efforts to branch 1.1.3 and
use the vendor tag BLUE. So the commands you might use are:

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 65/ 142

$ cvs import dir RED RED_1-0
$ cvs import -b 1.1.3 dir BLUE BLUE_1-5

Note that if your vendor tag does not match your -b option, cvsnt will not detect this case! For example,

$ cvs import -b 1.1.3 dir RED RED_1-0

Be careful; this kind of mismatch is sure to sow confusion or worse. I can’t think of a useful purpose for the ability to specify a
mismatch here, but if you discover such a use, don’t. cvsnt is likely to make this an error in some future release.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 66 /142

Chapter 15

How your build system interacts with CVS

As mentioned in the introduction, cvsnt does not contain software for building your software from source code. This section
describes how various aspects of your build system might interact with cvsnt.

One common question, especially from people who are accustomed to rcs, is how to make their build get an up to date copy of the
sources. The answer to this with cvsnt is two-fold. First of all, since cvsnt itself can recurse through directories, there is no need
to modify your Makefile (or whatever configuration file your build tool uses) to make sure each file is up to date. Instead, just use
two commands, first cvs -q update and then make or whatever the command is to invoke your build tool. Secondly, you do not
necessarily want to get a copy of a change someone else made until you have finished your own work. One suggested approach
is to first update your sources, then implement, build and test the change you were thinking of, and then commit your sources
(updating first if necessary). By periodically (in between changes, using the approach just described) updating your entire tree,
you ensure that your sources are sufficiently up to date.

One common need is to record which versions of which source files went into a particular build. This kind of functionality is
sometimes called bill of materials or something similar. The best way to do this with cvsnt is to use the tag command to record
which versions went into a given build (Section 5.4).

Using cvsnt in the most straightforward manner possible, each developer will have a copy of the entire source tree which is used
in a particular build. If the source tree is small, or if developers are geographically dispersed, this is the preferred solution. In
fact one approach for larger projects is to break a project down into smaller separately-compiled subsystems, and arrange a way
of releasing them internally so that each developer need check out only those subsystems which are they are actively working on.

Another approach is to set up a structure which allows developers to have their own copies of some files, and for other files
to access source files from a central location. Many people have come up with some such a system using features such as the
symbolic link feature found in many operating systems, or the VPATH feature found in many versions of make. One build tool
which is designed to help with this kind of thing is Odin (see ftp://ftp.cs.colorado.edu/pub/distribs/odin).

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 67 /142

Chapter 16

Special Files

In normal circumstances, cvsnt works only with regular files. Every file in a project is assumed to be persistent; it must be
possible to open, read and close them; and so on. cvsnt also ignores file permissions and ownerships, leaving such issues to be
resolved by the developer at installation time. In other words, it is not possible to "check in" a device into a repository; if the
device file cannot be opened, cvsnt will refuse to handle it. Files also lose their ownerships and permissions during repository
transactions.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 68/142

Appendix A

Guide to CVS commands

This appendix describes the overall structure of cvsnt commands, and describes some commands in detail

A.1 Overall structure of CVS commands

The overall format of all cvsnt commands is:

cvs [cvs_options] cvs_command [command_options] [command_args]

cvs The name of the cvsnt program.
cvs_options Some options that affect all sub-commands of cvsnt. These are described below.

cvs_command One of several different sub-commands. Some of the commands have aliases that can be used instead; those
aliases are noted in the reference manual for that command. There are only two situations where you may omit cvs_command:
cvs -H elicits a list of available commands, and cvs -v displays version information on cvsnt itself.

command_options Options that are specific for the command.

command_args Arguments to the commands.

There is unfortunately some confusion between cvs_options and command_options. -1, when given as a cvs_option, only
affects some of the commands. When it is given as a command_option is has a different meaning, and is accepted by more
commands. In other words, do not take the above categorization too seriously. Look at the documentation instead.

A.2 CVS’s exit status

cvsnt can indicate to the calling environment whether it succeeded or failed by setting its exif status. The exact way of testing the
exit status will vary from one operating system to another. For example in a unix shell script the $? variable will be 0 if the last
command returned a successful exit status, or greater than 0 if the exit status indicated failure.

If cvsnt is successful, it returns a successful status; if there is an error, it prints an error message and returns a failure status. The
one exception to this is the cvs diff command. It will return a successful status if it found no differences, or a failure status if
there were differences or if there was an error. Because this behavior provides no good way to detect errors, in the future it is
possible that cvs diff will be changed to behave like the other cvsnt commands.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 69/142

A.3 Default options and the ~/.cvsrc and CVSROOT/cvsrc files

There are some command_options that are used so often that you might have set up an alias or some other means to make sure
you always specify that option. One example (the one that drove the implementation of the .cvsre support, actually) is that many
people find the default output of the diff command to be very hard to read, and that either context diffs or unidiffs are much easier
to understand.

The ~/.cvsrec file is a way that you can add default options to cvs_commands within cvs, instead of relying on aliases or other
shell scripts.

The format of the ~/.cvsre file is simple. The file is searched for a line that begins with the same name as the cvs_command
being executed. If a match is found, then the remainder of the line is split up (at whitespace characters) into separate options and
added to the command arguments before any options from the command line.

If a command has two names (e.g., checkout and co), the official name, not necessarily the one used on the command line, will
be used to match against the file. So if this is the contents of the user’s ~/.cvsre file:

log -N

diff -u
update -P
checkout -P

the command cvs checkout foo would have the -P option added to the arguments, as well as cvs co foo.

With the example file above, the output from cvs diff foobar will be in unidiff format. cvs diff -c foobar will provide context
diffs, as usual. Getting "old" format diffs would be slightly more complicated, because diff doesn’t have an option to specify use
of the "old" format, so you would need cvs -f diff foobar.

In place of the command name you can use cvsnt to specify global options (Section A.4). For example the following line in
.Cvsre

cvs —-z6

causes cvsnt to use compression level 6.

The CVSROOT/cvsrec file on the server contains the default .cvsrc file that is used by all compatible clients. This is merged with
the local .cvsrc file and the result behaves as normal.

The CVSROOT/cvsrc file cannot contain global options (Section A.4) as it is parsed after the server has started.

Older cvsnt clients and Unix cvs clients will not use the global cvsrc.

A.4 Gilobal options

The available cvs_options (that are given to the left of cvs_command) are:

-allow-root=rootdir Specify legal cvsroot directory. Obsolete. See Section 2.9.4.1.

-a, --authenticate Authenticate all communication between the client and the server. Only has an effect on the cvsnt client.
Authentication prevents certain sorts of attacks involving hijacking the active tcp connection. Enabling authentication does
not enable encryption.

-bbindir In CVS 1.9.18 and older, this specified that rcs programs are in the bindir directory. Current versions of cvsnt do
not run rcs programs; for compatibility this option is accepted, but it does nothing.

-T tempdir Use tempdir as the directory where temporary files are located. Overrides the setting of the $TMPDIR envi-
ronment variable and any precompiled directory. This parameter should be specified as an absolute pathname.

-d cvs_root_directory Use cvs_root_directory as the root directory pathname of the repository. Overrides the
setting of the SCVSROOT environment variable. Chapter 2.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 70/142

-e editor Use editor to enter revision log information. Overrides the setting of the $CVSEDITOR and $EDITOR envi-
ronment variables. For more information, see Section 1.3.2.

-f Do not read the ~/.cvsre file. This option is most often used because of the non-orthogonality of the cvsnt option set. For
example, the cvs log option -N (turn off display of tag names) does not have a corresponding option to turn the display on.
So if you have -N in the ~/.cvsrc entry for log, you may need to use -f to show the tag names.

-F £ile Read the contents of £ile and append it to the supplied command line. Arguments are separated by whitespace, and
follow normal quoting rules.

-H, -help Display usage information about the specified cvs_command (but do not actually execute the command). If you don’t
specify a command name, cvs -H displays overall help for cvsnt, including a list of other help options.

-1 Do not log the cvs_command in the command history (but execute it anyway). Section A.17, for information on command
history.

-n Do not change any files. Attempt to execute the cvs_command, but only to issue reports; do not remove, update, or merge
any existing files, or create any new files.

This option has a long history and is not guaranteed to actually leave the sandbox in the same state that it started with. It
is supported only for the checkout command to an empty directory, which is required by certain frontends.

cvsnt has other commands which replace the functionality of this option - see status -q and Is commands.

-N Enable :local: access to a network share. Normally this is explicitly prohibited to discourage its use. It is recommended that
you setup a proper server instead, as problems encountered using network shares will not normally be supported.

-o[locale] Where supported by the server (CVSNT 2.0.57+), try to convert the character set of the server to that of the client.
This allows you to store exended characters such an umlauts in the repository even if your machine is set to a different
codepage/language to the server.

For Win32, the codepage used is the current ANSI codepage. This may not render correctly in the OEM codepage used
by the command line processor. To verify that CVSNT is doing the correct conversion look at the filename in Windows
Explorer.

As of CVSNT 2.0.59 this is the default behaviour.

-O Disable client/server locale translation. If the client and server are not in the same locale then care must be taken not to use
characters outside US-ASCII codepage if this option is used.

-Q Cause the command to be really quiet; the command will only generate output for serious problems.

-q Cause the command to be somewhat quiet; informational messages, such as reports of recursion through subdirectories, are
suppressed.

-r Make new working files read-only. Same effect as if the SCVSREAD environment variable is set (Appendix C). The default
is to make working files writable, unless watches are on (Section 11.6).

--readonly Make all users readonly. This is used for read only mirror servers.
-s variable=value Set a user variable (Section B.24).

-t Trace program execution; display messages showing the steps of cvsnt activity. Particularly useful with -n to explore the
potential impact of an unfamiliar command. More instances of -t increase verbosity.

-v, --version Display version and copyright information for cvsnt.

-w Make new working files read-write. Overrides the setting of the SCVSREAD environment variable. Files are created read-
write by default, unless SCVSREAD is set or -r is given.

-X, --encrypt Encrypt all communication between the client and the server. Only has an effect on the cvsnt client. Enabling
encryption implies that message traffic is also authenticated.

-z gzip-level Set the compression level. Valid levels are 1 (high speed, low compression) to 9 (low speed, high compres-
sion), or 0 to disable compression (the default). Only has an effect on the cvsnt client.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 71/142

A.5 Common command options

This section describes the command_options that are available across several cvsnt commands. These options are always given
to the right of cvs_command. Not all commands support all of these options; each option is only supported for commands
where it makes sense. However, when a command has one of these options you can almost always count on the same behavior of
the option as in other commands. (Other command options, which are listed with the individual commands, may have different
behavior from one cvsnt command to the other).

Warning: the history command is an exception; it supports many options that conflict even with these standard options.

-D date_spec Use the most recent revision no later than date_spec. date_spec is a single argument, a date description
specifying a date in the past.

The specification is sticky when you use it to make a private copy of a source file; that is, when you get a working file using
-D, cvsnt records the date you specified, so that further updates in the same directory will use the same date (for more
information on sticky tags/dates, Section 5.11).

-D is available with the checkout, diff, export, history, rdiff, rtag, and update commands. (The history command uses
this option in a slightly different way; Section A.17.1).

A wide variety of date formats are supported by cvsnt. The most standard ones are ISO8601 (from the International
Standards Organization) and the Internet e-mail standard (specified in RFC822 as amended by RFC1123).

ISO8601 dates have many variants but a few examples are:

1972-09-24
1972-09-24 20:05

There are a lot more ISO8601 date formats, and cvsnt accepts many of them, but you probably don’t want to hear the whole
long story :-).

In addition to the dates allowed in Internet e-mail itself, cvsnt also allows some of the fields to be omitted. For example:

24 Sep 1972 20:05
24 Sep

The date is interpreted as being in the local timezone, unless a specific timezone is specified.

These two date formats are preferred. However, cvsnt currently accepts a wide variety of other date formats. They are
intentionally not documented here in any detail, and future versions of cvsnt might not accept all of them.

One such format is month/day/year. This may confuse people who are accustomed to having the month and day in the
other order; 1/4/96 is January 4, not April 1.

Remember to quote the argument to the -D flag so that your shell doesn’t interpret spaces as argument separators. A
command using the -D flag can look like this:

$ cvs diff -D "1 hour ago" cvs.texinfo

-f When you specify a particular date or tag to cvsnt commands, they normally ignore files that do not contain the tag (or did not
exist prior to the date) that you specified. Use the -f option if you want files retrieved even when there is no match for the
tag or date. (The most recent revision of the file will be used).

Note that even with -f, a tag that you specify must exist (that is, in some file, not necessary in every file). This is so that
cvsnt will continue to give an error if you mistype a tag name.

-f is available with these commands: annotate, checkout, export, rdiff, rtag, and update.
Warning: The commit and remove commands also have a -f option, but it has a different behavior for those commands.
See Section A.12.1, and Section 8.2.

-k kflag Alter the default processing of keywords. Chapter 13, for the meaning of kf1lag. Your kflag specification is sticky
when you use it to create a private copy of a source file; that is, when you use this option with the checkout or update
commands, cvsnt associates your selected k f1ag with the file, and continues to use it with future update commands on
the same file until you specify otherwise.

The -k option is available with the add, checkout, diff, import and update commands.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 72/142

-1 Local; run only in current working directory, rather than recursing through subdirectories.
Warning: this is not the same as the overall cvs -1 option, which you can specify to the left of a cvs command!
Available with the following commands: annotate, checkout, commit, diff, edit, editors, export, log, rdiff, remove,
rtag, status, tag, unedit, update, watch, and watchers.

-m message Use message as log information, instead of invoking an editor.
Auvailable with the following commands: add, commit and import.

-n Do not run any checkout/commit/tag program. (A program can be specified to run on each of these activities, in the modules
database (Section B.1); this option bypasses it).
Warning: this is not the same as the overall cvs -n option, which you can specify to the left of a cvs command!

Available with the checkout, commit, export, and rtag commands.
-P Prune empty directories. See Section 8.3.

-p Pipe the files retrieved from the repository to standard output, rather than writing them in the current directory. Available with
the checkout and update commands.

-R Process directories recursively. This is on by default.
Auvailable with the following commands: annotate, checkout, commit, diff, edit, editors, export, rdiff, remove, rtag,
status, tag, unedit, update, watch, and watchers.

-r tag Use the revision specified by the t ag argument instead of the default head revision. As well as arbitrary tags defined
with the tag or rtag command, two special tags are always available: HEAD refers to the most recent version available in
the repository, and BASE refers to the revision you last checked out into the current working directory.

The tag specification is sticky when you use this with checkout or update to make your own copy of a file: cvsnt re-
members the tag and continues to use it on future update commands, until you specify otherwise (for more information on
sticky tags/dates, Section 5.11).

The tag can be either a symbolic or numeric tag, as described in Section 5.4, or the name of a branch, as described in
Chapter 6.

Specifying the -q global option along with the -r command option is often useful, to suppress the warning messages when
the rcs file does not contain the specified tag.

Warning: this is not the same as the overall cvs -r option, which you can specify to the left of a cvsnt command!

-r is available with the checkout, commit, diff, history, export, rdiff, rtag, and update commands.

-W Specify file names that should be filtered. You can use this option repeatedly. The spec can be a file name pattern of the
same type that you can specify in the .cvswrappers file. Available with the following commands: import, and update.

A.6 add--Add files to repository

* Requires: repository, working directory.
¢ Changes: repository.
¢ Synonym: ad,new

This adds new files to the existing working directory. Before any commands which operate on sandbox files can be used, they
must be added to the list of cvs controlled files using this command.

Directories are added immediately, and exist on all branches. Ordinary files must be committed before other users are able to use
them.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 73/142

A.6.1 add options

-b bugid Mark the newly added file with a bug identifier.
-k kflag Override the default expansion option for the file.
-m message Use "message" for the message creation log.

-r branch Add the new file onto a different branch (default is the same branch as the directory).

A.7 admin--Administration

* Requires: repository, working directory.
» Changes: repository.

e Synonym: adm,rcs

This is the cvsnt interface to assorted administrative facilities. Some of them have questionable usefulness for cvsnt but exist for
historical purposes. Some of the questionable options are likely to disappear in the future. This command does work recursively,
so extreme care should be used.

Do not use this command unless you know what you are doing. Some of the admin commands can have unexpected consequences.

On unix, if there is a group named cvsadmin, only members of that group can run cvs admin. This group should exist on the
server, or any system running the non-client/server cvsnt. To disallow cvs admin for all users, create a group with no users in it.
On Windows, server administrators are able to use the admin command.

A.7.1 admin options

-ksubst This option is provided as legacy support for older servers and has no function under CVSNT.

-l[rev] Lock the revision with number rev. If a branch is given, lock the latest revision on that branch. If rev is omitted, lock
the latest revision on the default branch. There can be no space between -1 and its argument.

This command is depreciated in favour of the ’edit -¢’ and ’edit -x” commands, which gives pseudo and genuine reserved
checkouts.

-mrev:msg Replace the log message of revision rev with msg.

-orange Deletes (outdates) the revisions given by range.

Note that this command can be quite dangerous unless you know exactly what you are doing (for example see the warnings
below about how the revl:rev2 syntax is confusing).

If you are short on disc this option might help you. But think twice before using it--there is no way short of restoring
the latest backup to undo this command! If you delete different revisions than you planned, either due to carelessness or
(heaven forbid) a cvsnt bug, there is no opportunity to correct the error before the revisions are deleted. It probably would
be a good idea to experiment on a copy of the repository first.

Specify range in one of the following ways:

revl::irev2 Collapse all revisions between revl and rev2, so that cvsnt only stores the differences associated with going
from rev1 to rev2, not intermediate steps. For example, after -0 1.3::1.5 one can retrieve revision 1.3, revision 1.5, or
the differences to get from 1.3 to 1.5, but not the revision 1.4, or the differences between 1.3 and 1.4. Other examples:
-0 1.3::1.4 and -0 1.3::1.3 have no effect, because there are no intermediate revisions to remove.

::rev Collapse revisions between the beginning of the branch containing rev and rev itself. The branchpoint and rev
are left intact. For example, -0 ::1.3.2.6 deletes revision 1.3.2.1, revision 1.3.2.5, and everything in between, but
leaves 1.3 and 1.3.2.6 intact.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 747142

rev:: Collapse revisions between rev and the end of the branch containing rev. Revision rev is left intact but the head
revision is deleted.

rev Delete the revision rev. For example, -0 1.3 is equivalent to -0 1.2::1.4.

revl:rev2 Delete the revisions from revl to rev2, inclusive, on the same branch. One will not be able to retrieve
revl or rev2 or any of the revisions in between. For example, the command cvs admin -oR_1_01:R_1_02. is
rarely useful. It means to delete revisions up to, and including, the tag R_1_02. But beware! If there are files that
have not changed between R_1_02 and R_1_03 the file will have the same numerical revision number assigned to the
tags R_1_02 and R_1_03. So not only will it be impossible to retrieve R_1_02; R_1_03 will also have to be restored
from the tapes! In most cases you want to specify revl::rev2 instead.

:rev Delete revisions from the beginning of the branch containing rev up to and including rev.

rev: Delete revisions from revision rev, including rev itself, to the end of the branch containing rev.

None of the revisions to be deleted may have branches or locks.

If any of the revisions to be deleted have symbolic names, and one specifies one of the :: syntaxes, then cvsnt will give
an error and not delete any revisions. If you really want to delete both the symbolic names and the revisions, first delete
the symbolic names with cvs tag -d, then run cvs admin -o. If one specifies the non-:: syntaxes, then cvsnt will delete the
revisions but leave the symbolic names pointing to nonexistent revisions. This behavior is preserved for compatibility with
previous versions of cvsnt, but because it isn’t very useful, in the future it may change to be like the :: case.

Due to the way cvsnt handles branches rev cannot be specified symbolically if it is a branch. Section 6.5, for an explana-
tion.

Make sure that no-one has checked out a copy of the revision you outdate. Strange things will happen if he starts to edit
it and tries to check it back in. For this reason, this option is not a good way to take back a bogus commit; commit a new
revision undoing the bogus change instead (Section 6.8).

-q Run quietly; do not print diagnostics.

-t[file] Useful with cvsnt. Write descriptive text from the contents of the named file into the rcs file, deleting the existing

text. The £11e pathname may not begin with -. The descriptive text can be seen in the output from cvs log (Section A.21).
There can be no space between -t and its argument.

If £11e is omitted, obtain the text from standard input, terminated by end-of-file or by a line containing . by itself. Prompt
for the text if interaction is possible; see -I.

-t-string Similar to -tfile. Write descriptive text from the st ring into the rcs file, deleting the existing text. There can be

no space between -t and its argument.

A.8 annotate--find out who made changes to the files

* Requires: repository, working directory.

* Changes: nothing.

* Synonyms: ann

Annotate is used to discover who made changes to specific lines within files. The output to annotate gives the username, date
and version number of the change.

The output to annotate is similar to checkout, for example:

1
1
1

.54
.54
.71

(tmh 28-Aug-02) : char host [NI_MAXHOST];
(tmh 28-Aug-02) :
(tmh 26-Mar-03) : if (!getnameinfo ((struct sockaddrx)&ss,ss_len,host, <«

NI_MAXHOST,NULL, O, flags))

.54

(tmh 28-Aug-02) : remote_host_name = xstrdup (host);

This information is usually enough to assign blame (or credit!) when tracing bugs.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 757142

A.8.1 annotate options

-1 Local directory only, no recursion

-R Process directories recursively (default).

-f Use head revision if tag is not found.

-r rev Annotate files for specific revision or tag.

-D date Annotate files for specific date

A.9 chacl--Change access control lists

 Synopsis: chacl [-R] [-r branch] [-u user] [-j branch] [-n] [-p priority] [-m message] [-a [no]{readlwritelcreateltaglcontrollallinone}[,...]]
[-d] [file or directory...]

* Requires: repository, working directory.

¢ Changes: repository.

¢ Synonyms: setacl, setperm

Modify the access control list for a file or directory. See also Section 3.3 for more details.

A.9.1 chacl options

-a Add access control entry - any combination of read,write,create,tag,control. Any of these may be prefixed by 'no’ to deny
access. Also special access all or none for setting all permissions.

-d Delete access control entry

-j branch Entry applies when merging from branch.

-m message Show customised error message when access is blocked due to this entry.
-n Stop entry from being inherited by subdirectories.

-p priority Modify the priority that this entry has. This is an advanced option - the internal prioritisation is designed to work
correctly in most circumstances.

-r branch This entry applies to a single branch only.
-R Recurse into subdirectories. Note that becuase entries are by default recursive this option is not normally required.

-uuser This entry applies to a single user (or group) only.

A.10 checkout--Check out sources for editing

» Synopsis: checkout [options] modules...
* Requires: repository.
* Changes: working directory.

* Synonyms: co, get

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 76/142

Create or update a working directory containing copies of the source files specified by modules. You must execute checkout
before using most of the other cvsnt commands, since most of them operate on your working directory.

The modules are either symbolic names for some collection of source directories and files, or paths to directories or files in the
repository. The symbolic names are defined in the modules file. Section B.1.

Depending on the modules you specify, checkout may recursively create directories and populate them with the appropriate
source files. You can then edit these source files at any time (regardless of whether other software developers are editing their
own copies of the sources); update them to include new changes applied by others to the source repository; or commit your work
as a permanent change to the source repository.

Note that checkout is used to create directories. The top-level directory created is always added to the directory where checkout
is invoked, and usually has the same name as the specified module. In the case of a module alias, the created sub-directory may
have a different name, but you can be sure that it will be a sub-directory, and that checkout will show the relative path leading to
each file as it is extracted into your private work area (unless you specify the -Q global option).

The files created by checkout are created read-write, unless the -r option to cvsnt (Section A.4) is specified, the CVSREAD
environment variable is specified (Appendix C), or a watch is in effect for that file (Section 11.6).

Note that running checkout on a directory that was already built by a prior checkout is also permitted. This is similar to
specifying the -d option to the update command in the sense that new directories that have been created in the repository will
appear in your work area. However, checkout takes a module name whereas update takes a directory name. Also to use checkout
this way it must be run from the top level directory (where you originally ran checkout from), so before you run checkout to
update an existing directory, don’t forget to change your directory to the top level directory.

For the output produced by the checkout command see Section A.40.2.

A.10.1 checkout options

These standard options are supported by checkout (Section A.5, for a complete description of them):

-D date Use the most recent revision no later than date. This option is sticky, and implies -P. See Section 5.11, for more
information on sticky tags/dates.

-f Only useful with the -D date or -r tag flags. If no matching revision is found, retrieve the most recent revision (instead of
ignoring the file).

-k kflag Process keywords according to kf1ag. See Chapter 13. This option is sticky; future updates of this file in this work-
ing directory will use the same kf1lag. The status command can be viewed to see the sticky options. See Section A.37,
for more information on the status command.

-1 Local; run only in current working directory.

-n Do not run any checkout program (as specified with the -0 option in the modules file; Section B.1).
-P Prune empty directories. See Section 8.5.

-p Pipe files to the standard output.

-R Checkout directories recursively. This option is on by default.

-r tag Use revision tag. This option is sticky, and implies -P. See Section 5.11, for more information on sticky tags/dates.
In addition to those, you can use these special command options with checkout:

-A Reset any sticky tags, dates, or -k options. See Section 5.11, for more information on sticky tags/dates.

-¢ Copy the module file, sorted, to the standard output, instead of creating or modifying any files or directories in your working
directory.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 7771142

-d dir Create a directory called dir for the working files, instead of using the module name. In general, using this flag is
equivalent to using mkdir dir; cd dir followed by the checkout command without the -d flag.

There is an important exception, however. It is very convenient when checking out a single item to have the output appear
in a directory that doesn’t contain empty intermediate directories. In this case only, cvsnt tries to "shorten" pathnames to
avoid those empty directories.

For example, given a module foo that contains the file bar.c, the command cvs co -d dir foo will create directory dir and
place bar.c inside. Similarly, given a module bar which has subdirectory baz wherein there is a file quux.c, the command
cvs -d dir co bar/baz will create directory dir and place quux.c inside.

Using the -N flag will defeat this behavior. Given the same module definitions above, cvs co -N -d dir foo will create
directories dir/foo and place bar.c inside, while cvs co -N -d dir bar/baz will create directories dir/bar/baz and place
quux.c inside.

-j tag With two -j options, merge changes from the revision specified with the first -j option to the revision specified with the
second j option, into the working directory.

With one -j option, merge changes from the ancestor revision to the revision specified with the -j option, into the working
directory. The ancestor revision is the common ancestor of the revision which the working directory is based on, and the
revision specified in the -j option.

In addition, each -j option can contain an optional date specification which, when used with branches, can limit the chosen
revision to one within a specific date. An optional date is specified by adding a colon (:) to the tag: -jSymbolic_
Tag:Date_Specifier.

Chapter 6.

-b Perform the -j merge from the branchpoint not the last mergepoint. This can be useful to re-merge changes that have been
merged before, however it likely to produce a lot of conflicts.

-m Perform the -j merge from the last recorded mergepoint. This is the default.

-N Only useful together with -d dir. With this option, cvsnt will not "shorten" module paths in your working directory when
you check out a single module. See the -d flag for examples and a discussion.

-s Like -c, but include the status of all modules, and sort it by the status string. Section B.1, for info about the -s option that is
used inside the modules file to set the module status.

-3 Produce 3-way conflict differences, containing the old and new files from the server and the edited files.

-S Select between conflicting case-sensitive names on a case-insensitive client. This provides limited support for checking out
repositories with such conflicts - the problem should really be fixed in the repository.

-t Update using the last checkin time not the current time. This can cause issues with build systems so it is not recommended
that this be used unless you are fully aware of the side-effects.

A.10.2 checkout examples

Get a copy of the module tc:

S cvs checkout tc

Get a copy of the module tc as it looked one day ago:

$ cvs checkout -D yesterday tc

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 78/142

A.11 chown--Change directory owner

* Synopsis: chown [-R] user directory...
* Requires: working directory, repository
» Changes: repository.

* Synonyms: setowner

Change the owner of a directory. The owner has control access permissions (sometimes referred to as admin rights) over files
within that directory. CVSNT administrators are always an implied owner.

A.11.1 chown options

-R Change directory owner recursively.

A.12 commit--Check files into the repository

* Synopsis: commit [-InRf] [-m ’log_message’ | -F file] [-r revision] [files...]
* Requires: working directory, repository.
* Changes: repository.

* Synonym: ci

Use commit when you want to incorporate changes from your working source files into the source repository.

If you don’t specify particular files to commit, all of the files in your working current directory are examined. commit is careful
to change in the repository only those files that you have really changed. By default (or if you explicitly specify the -R option),
files in subdirectories are also examined and committed if they have changed; you can use the -1 option to limit commit to the
current directory only.

commit verifies that the selected files are up to date with the current revisions in the source repository; it will notify you, and exit
without committing, if any of the specified files must be made current first with update (Section A.40). commit does not call the
update command for you, but rather leaves that for you to do when the time is right.

When all is well, an editor is invoked to allow you to enter a log message that will be written to one or more logging programs
(Section B.1, and Section B.8) and placed in the rcs file inside the repository. This log message can be retrieved with the log
command; see Section A.21. You can specify the log message on the command line with the -m message option, and thus
avoid the editor invocation, or use the -F £ile option to specify that the argument file contains the log message.

A.12.1 commit options

These standard options are supported by commit (Section A.5, for a complete description of them):

-D Assume all datestamps are different and send all files to the server for checking.
-1 Local; run only in current working directory.
-n Do not run any module program.

-R Commit directories recursively. This is on by default.

commit also supports these options:

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 79/142

-F file Read the log message from £1ile, instead of invoking an editor.

-f Note that this is not the standard behavior of the -f option as defined in Section A.5.

Force cvsnt to commit a new revision even if you haven’t made any changes to the file. If the current revision of £ile is
1.7, then the following two commands are equivalent:

$ cvs commit —-f file
$ cvs commit -r 1.8 file

The -f option disables recursion (i.e., it implies -1). To force cvsnt to commit a new revision for all files in all subdirectories,
you must use -f -R.

This command is also used when changing -k expansion options. Unless -f is specified modified options will not be
propogated back to the server.

-m message Use message as the log message, instead of invoking an editor.

-¢ Check for a valid edit on the file before committing. See ’cvs edit’.

-b bugid Only commit files that have been edited and marked with bug bugid.

-B bugid Mark committed files as belonging to bug bugid.

-e Keep files edited after commit - supresses the automatic unedit that normally follows a commit.

-T Attempt to move branches rather than create branch revisions where possible. Where a branch has no revisions, this option
will compare what you are trying to commit with the parent branch head, and if they are identical it will move the branch
rather than create a new revision.

This option has detrimental affects on reproducability, for example:

In branch A, a developer is working with files a (version 1.1) and b (version 1.1.2.1). He merges from HEAD, then commits
using this option, moving the branch A in file a to version 1.2, and committing a new file b version 1.1.2.2

Meanwhile manager B notices that that branch A is now broken, and asks the developer to fix it. The developer knows that
the revsion 1.1.2.1 file works, so he wants to test with the older version. He can’t. Since the environment that the older file
was written in no longer exists (as the branchpoint has moved), it’s impossible to roll back.

For this reason it is recommended that this option only be used where absolutely necessary, and on unrelated files only.

A.12.2 commit examples

A.12.2.1 Committing to a branch

You can commit to a branch revision (one that has an even number of dots) with the -r option. To create a branch revision, use
the -b option of the rtag or tag commands (Chapter 6). Then, either checkout or update can be used to base your sources on the
newly created branch. From that point on, all commit changes made within these working sources will be automatically added
to a branch revision, thereby not disturbing main-line development in any way. For example, if you had to create a patch to the
1.2 version of the product, even though the 2.0 version is already under development, you might do:

$ cvs rtag -b -r FCS1_2 FCS1_2_Patch product_module
S cvs checkout -r FCS1_2_Patch product_module

$ cd product_module

[[hack away]]

$ cvs commit

This works automatically since the -r option is sticky.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 80/142

A.12.2.2 Creating the branch after editing

Say you have been working on some extremely experimental software, based on whatever revision you happened to checkout
last week. If others in your group would like to work on this software with you, but without disturbing main-line development,
you could commit your change to a new branch. Others can then checkout your experimental stuff and utilize the full benefit of
cvsnt conflict resolution. The scenario might look like:

[[hacked sources are present]]
$ cvs tag -b EXPRI1

$ cvs update -r EXPRI1

$ cvs commit

The update command will make the -r EXPR1 option sticky on all files. Note that your changes to the files will never be
removed by the update command. The commit will automatically commit to the correct branch, because the -r is sticky.

To work with you on the experimental change, others would simply do

S cvs checkout -r EXPR1 whatever_module

A.13 diff--Show differences between revisions

* Synopsis: diff [-IR] [format_options] [[-r revl | -D datel] [-r rev2 | -D date2]] [files...]
* Requires: working directory, repository.
* Changes: nothing.

The diff command is used to compare different revisions of files. The default action is to compare your working files with the
revisions they were based on, and report any differences that are found.

If any file names are given, only those files are compared. If any directories are given, all files under them will be compared.

The exit status for diff is different than for other cvsnt commands; for details Section A.2.

A.13.1 diff options
These standard options are supported by diff (Section A.5, for a complete description of them):

-D date Use the most recent revision no later than date. See -r for how this affects the comparison.

-k kflag Process keywords according to kf1ag. See Chapter 13.

This option is for use when diffing two repository revisions - it will probably not do what you expect when diffing against
a sandbox file.

-1 Local; run only in current working directory.
-R Examine directories recursively. This option is on by default.

-r tag Compare with revision tag. Zero, one or two -r options can be present. With no -r option, the working file will be
compared with the revision it was based on. With one -r, that revision will be compared to your current working file. With
two -r options those two revisions will be compared (and your working file will not affect the outcome in any way).

One or both -r options can be replaced by a -D date option, described above.

The following options specify the format of the output. They have the same meaning as in GNU diff.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051

81/142

=0 =1 =2 =3 =4 =5 =6 =7 =8 =9
—-—binary
——brief
——changed—-group—-format=arg
=@

—-C nlines

——context [=lines]

-e ——ed

-t ——expand-tabs

—-f ——-forward-ed

—-horizon-lines=arg

——ifdef=arg

-w —-—-ignore-all-space

-B —--ignore-blank-lines

-i ——-ignore-case

-1 regexp
——ignore-matching-lines=regexp

-h

-b --ignore-space-change

-T —--initial-tab

-L label

——label=label
——left-column
-d ——minimal
-N ——new-file
—-—-new-line-format=arg
—--old-line-format=arg

—-—-paginate

-n —-rcs

-s ——report-identical-files
P

——show-c—-function
-y ——side-by-side
-F regexp
——show-function-line=regexp
—-H —-speed-large—-files
——suppress—common—lines
-a ——text
——unchanged-group—-format=arg
=
-U nlines
——unified[=lines]
-V arg
-W columns
——width=columns

A.13.2 diff examples

The following line produces a Unidiff (-u flag) between revision 1.14 and 1.19 of backend.c. Due to the -kk flag no keywords

are substituted, so differences that only depend on keyword substitution are ignored.

S cvs diff -kk -u -r 1.14 -r 1.19 backend.c

Suppose the experimental branch EXPR1 was based on a set of files tagged RELEASE_1_0. To see what has happened on that

branch, the following can be used:

$ cvs diff -r RELEASE_1_0 -r EXPRI1

A command like this can be used to produce a context diff between two releases:

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 82/142

$ cvs diff -c¢ -r RELEASE_1 0 -r RELEASE_1_1 > diffs

If you are maintaining ChangeLogs, a command like the following just before you commit your changes may help you write the
ChangeLog entry. All local modifications that have not yet been committed will be printed.

S cvs diff —-u | less

A.14 edit--Mark files for editing

* Requires: repository, sandbox.
* Changes: Current directory.

* Synonyms:

This is command is used to mark files for editing in a reserved or semi-reserved scenario. When used with bug identifiers it also
marks which users are currently working on which bugs, and which files are affected by those bugs.

cvs is primarily designed as a cooperative system, as experience has shown that this is the most productive way for teams
of developers to work. The reserved models implemented by this command do not replace proper configuration management
processes - the correct model to use should be decided after due consideration of the advantages and disadvantages of each. See
also Section 11.6

The default working model is a cooperative multiple-editors model. Any number of people may be editing a file at any time and
anyone may commit changes. This is very similar to the standard cooperative model except that the server keeps track of the
editors.

Using the edit -c option creates a semi-reserved or cooperative reserved system. The edit command checks that there are no
editors before editing the file, however its cooperative nature does not prevent other users editing if they wish to.

For a stricter model the -ke and -kx expansion options create a mandatory reserved system on individual files. Users are prevented
from editing or committing a file unless they are the only editor of that file.

A.14.1 edit options

-A Modify filesystem ACL on edited file (Win32 only, Experimental).

In shared sandbox scenarios this command is designed to stop other users from being able to modify the edited file - it
create an access control list that disallows write access to anyone but the editor.

-a Specify actions for the temporary watch that is created during an edit. This may be one of edit,unedit,commit,all,none.

-b bugid Mark the edited file with a bug identifier. This marks the editor as not only using the file, but also working on a
particular bug on that file. Specify multiple -b options for multiple bugs.

-¢ Check that working files are unedited before appying the edit.

-C Check that working file is unmodified.

-d Check that working files are up to date.

-f Edit even if working files are already edited by someone else (default).

-1 Do not recurse into subdirectories.

-m message Specify a reason for this edit. This message is made available as an option to the trigger libraries and notify script.

-R Process directories recursively (default).

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 83/142

-w Edit the whole file, not just the current branch. Normally edits only apply to the branch that is current at the time of the edit.
If you wish to stop anyone changing other branches then this option allow this.

-x Exclusive edit. Attempt to stop other users editing the file even if they do not use the -¢ option.

-z Edit creates copies of the original files in the CVS/Base directory. With this option those copies are gzip compressed, which
saves disk space and stops the copies being found by text searches of the sandbox.

A.15 editors--Find out who is editing a file

* Requires: repository, sandbox.
¢ Changes: nothing.
e Synonyms:

This command queries the server for everyone editing a file or group of files. It can also optionally show which bugs are being
worked on.

The server only knows the last reported state of each client. In a controlled environment this is very likely to be accurate, however
it is possible to leave edits on the server and not on the client (for example my deleting the sandbox without using commit/unedit).

The normal editors output is as follows:

components.dir/TEST.xml tmh Fri Dec 3 16:15:00 2004 GMT tucker c:\temp\repos\ <
components.dir
rep/version_no.h tmh Thu Nov 4 17:37:43 2004 GMT tucker D:\t\test\rep

If you list edits for all branches and bug identifiers you get an extra columns. The full output is as follows:

components.dir/TEST.xml tmh Fri Dec 3 16:15:00 2004 GMT tucker c:\temp\repos\ <
components.dir 3465 HEAD

rep/version_no.h tmh Thu Nov 4 17:37:43 2004 GMT tucker D:\t\test\rep <
HEAD

The first output is designed to be compatible with older cvs versions that did not support the full cvsnt feature set.

A.15.1 editors options

-a Show all branches, not just the current branch.

-¢ Check whether edit on the selected files would actually succeed. This can be used by frontends to verify an edit without
actually performing it.

-1 Process this directory only
-R Process directories recursively (default).

-v Show active bugs within the output.

A.16 export--Export sources from CVS, similar to checkout

* Synopsis: export [-INnR] [-r revl-D date] [-k subst] [-d dir] module...
* Requires: repository.

* Changes: current directory.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 84/142

This command is a variant of checkout; use it when you want a copy of the source for module without the cvsnt administrative
directories. For example, you might use export to prepare source for shipment off-site. This command requires that you specify
a date or tag (with -D or -r), so that you can count on reproducing the source you ship to others (and thus it always prunes empty
directories).

One often would like to use -kv with cvs export. This causes any keywords to be expanded such that an import done at some
other site will not lose the keyword revision information. But be aware that doesn’t handle an export containing binary files
correctly. Also be aware that after having used -Kkv, one can no longer use the ident command (which is part of the rcs suite--see
ident(1)) which looks for keyword strings. If you want to be able to use ident you must not use -kv.

A.16.1 export options
These standard options are supported by export (Section A.5, for a complete description of them):

-D date Use the most recent revision no later than date.

-f If no matching revision is found, retrieve the most recent revision (instead of ignoring the file).
-1 Local; run only in current working directory.

-n Do not run any checkout program.

-R Export directories recursively. This is on by default.

-r tag Use revision tag.
In addition, these options (that are common to checkout and export) are also supported:

-d dir Create a directory called dir for the working files, instead of using the module name. Section A.10.1, for complete
details on how cvsnt handles this flag.

-k subst Set keyword expansion mode (Section 13.4).

-N Only useful together with -d dir. Section A.10.1, for complete details on how cvsnt handles this flag.

A.17 history--Show status of files and users

 Synopsis: history [-report] [-flags] [-options args] [files...]
* Requires: the file $CYSROOT/CVSROOT/history
* Changes: nothing.

cvsnt can keep a history file that tracks each use of the checkout, commit, rtag, update, and release commands. You can use
history to display this information in various formats.

Logging must be enabled by creating the file $SCVSROOT/CVSROOT/history.

Warning: history uses -f, -1, -n, and -p in ways that conflict with the normal use inside cvsnt (Section A.5).

A.17.1 history options
Several options (shown above as -report) control what kind of report is generated:

-¢ Report on each time commit was used (i.e., each time the repository was modified).

-e Everything (all record types). Equivalent to specifying -x with all record types. Of course, -e will also include record types
which are added in a future version of cvsnt; if you are writing a script which can only handle certain record types, you’ll
want to specify -x.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 85/142

-m module Report on a particular module. (You can meaningfully use -m more than once on the command line.)
-0 Report on checked-out modules. This is the default report type.
-T Report on all tags.

-x type Extract a particular set of record types type from the cvsnt history. The types are indicated by single letters, which
you may specify in combination.

Certain commands have a single record type:

F release
O checkout
E export
T rtag

One of four record types may result from an update:

C A merge was necessary but collisions were detected (requiring manual merging).
G A merge was necessary and it succeeded.
U A working file was copied from the repository.

W The working copy of a file was deleted during update (because it was gone from the repository).
One of three record types results from commit:

A A file was added for the first time.
M A file was modified.

R A file was removed.
The options shown as -flags constrain or expand the report without requiring option arguments:

-a Show data for all users (the default is to show data only for the user executing history).
-1 Show last modification only.

-w Show only the records for modifications done from the same working directory where history is executing.
The options shown as -options args constrain the report based on an argument:

-b str Show data back to a record containing the string st r in either the module name, the file name, or the repository path.

-D date Show data since date. This is slightly different from the normal use of -D date, which selects the newest revision
older than date.

-f file Show data for a particular file (you can specify several -f options on the same command line). This is equivalent to
specifying the file on the command line.

-nmodule Show data for a particular module (you can specify several -n options on the same command line).
-p repository Show data for a particular source repository (you can specify several -p options on the same command line).

-r rev Show records referring to revisions since the revision or tag named rev appears in individual rcs files. Each rcs file is
searched for the revision or tag.

-t tag Show records since tag t ag was last added to the history file. This differs from the -r flag above in that it reads only the
history file, not the rcs files, and is much faster.

-u name Show records for user name.

-z timezone Show times in the selected records using the specified time zone instead of UTC.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 86/142

A.18 import--Import sources into CVS, using vendor branches

* Synopsis: import [-options] repository vendortag releasetag...
* Requires: Repository, source distribution directory.

¢ Changes: repository.

Use import to incorporate an entire source distribution from an outside source (e.g., a source vendor) into your source repository
directory. You can use this command both for initial creation of a repository, and for wholesale updates to the module from the
outside source. Chapter 14, for a discussion on this subject.

The repository argument gives a directory name (or a path to a directory) under the cvsnt root directory for repositories; if
the directory did not exist, import creates it.

When you use import for updates to source that has been modified in your source repository (since a prior import), it will notify
you of any files that conflict in the two branches of development; use checkout -j to reconcile the differences, as import instructs
you to do.

If cvsnt decides a file should be ignored (Section B.19), it does not import it and prints I followed by the filename (Section A.18.2,
for a complete description of the output).

If the file SCVSROOT/CVSROOT/cvswrappers exists, any file whose names match the specifications in that file will be treated
as packages and the appropriate filtering will be performed on the file/directory before being imported. Section B.3.

The outside source is saved in a first-level branch, by default 1.1.1. Updates are leaves of this branch; for example, files from the
first imported collection of source will be revision 1.1.1.1, then files from the first imported update will be revision 1.1.1.2, and
SO on.

At least one argument is required. repository is needed to identify the collection of source. Normally also two other
arguments are supplied - vendortag is a tag for the entire branch (e.g., for 1.1.1). You must also specify at least one releas
etag to identify the files at the leaves created each time you execute import.

Note that by default import does not change the directory in which you invoke it. In particular, it does not set up that directory
as a cvsnt working directory. For initial imports the -C option will achieve this, but for vendor source imports you need to import
them first and then check them out into a different directory (Section 1.3.1).

A.18.1 import options

This standard option is supported by import (Section A.5, for a complete description):
-m message Use message as log information, instead of invoking an editor.

There are the following additional special options.

-b branch See Section 14.6.

-k subst Indicate the keyword expansion mode desired. This setting will apply to all files created during the import, but not to
any files that previously existed in the repository. See Section 13.4, for a list of valid -k settings.

-I name Specify file names that should be ignored during import. You can use this option repeatedly. To avoid ignoring any
files at all (even those ignored by default), specify -1 !".
name can be a file name pattern of the same type that you can specify in the .cvsignore file. Section B.19.
If you specify ’-1 @’ the contents of .cvsigore files are ignored for the import.

-W spec Specify file names that should be filtered during import. You can use this option repeatedly. To override all the default
wrappers specify -W I”.

spec can be a file name pattern of the same type that you can specify in the .cvswrappers file. Section B.3.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 87 /142

-C Create CVS directories during initial import. This provides simplified setup of a sandbox, however as it does not contact the
server is not suitable for vendor updates - for this a proper import/checkout sequence should be used.

-i Ignore files with names that are illegal on windows.
-d Use the modification time of the file as the import time instead of the current time.
-f Overwrite any duplicate release tags within imported files.

-n Do not require vendor or release tags. This is used for initial imports only, and creates a repository without a vendor branch.
If you are not planning to use vendor source imports then using this option simplifies the import process.

A.18.2 import output

import keeps you informed of its progress by printing a line for each file, preceded by one character indicating the status of the
file:

U file The file already exists in the repository and has not been locally modified; a new revision has been created (if necessary).
N file The file is a new file which has been added to the repository.

C file The file already exists in the repository but has been locally modified; you will have to merge the changes.

I £ile The file is being ignored (Section B.19).

L f£ile The file is a symbolic link; cvs import ignores symbolic links. People periodically suggest that this behavior should be
changed, but if there is a consensus on what it should be changed to, it doesn’t seem to be apparent. (Various options in
the modules file can be used to recreate symbolic links on checkout, update, etc.; Section B.1.)

A.18.3 import examples

See Chapter 14, and Section 4.1.1.

A.19 init--Initialise a new repository

* Requires: local access.
* Changes: repository.

* Synonyms:

Initialises a new repository for use. This command can only be issued locally on the server, not remotely. See also Section 2.6

A.19.1 init options
Init can be called succesfully without any options.

-a alias Define the repository alias for the new repository.
-d description Set the repository description
-f Force overwrite of an existing repository. This doesn’t normally make sense, so be careful with this option.

-r repository Remote repository creation. To successfully use this you must have an admin account on an existing repository,
remote init must be initialized on the server, and the server needs the access rights to modify its global configuration.

-n Do not attempt repository registration

-u Unregister an existing repository. For this to succeed remotely the same conditions must exist as in -r.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 88/142

A.20 info--Get information about the client and server

* Requires: nothing. (Repository required for server functions).
* Changes: nothing.

* Synonyms: inf

Return information about available protocols on the client or server. Also list the current cvsignore and cvswrappers settings.
Without any parameters this lists available protocols:

$ cvs info
Available protocols:

local (internal)

ext ext 2.0.62.1872

fork fork 2.0.62.1872

gserver gserver 2.0.62.1872 (Active Directory)
ntserver ntserver 2.0.62.1872

pserver pserver 2.0.62.1872

server server 2.0.62.1872

ssh ssh 2.0.62.1872

sspi sspi 2.0.62.1872

For information about an individual protocol specify the prototocol name on the command line.

$ cvs info pserver

Name: pserver
Version: pserver 2.0.62.1872 (Debug)
Syntax: :pserver [;keyword=value...]: [username[:password]@]host[:port] [:]/path
Username: Optional
Password: Optional
Hostname: Required
Port: Optional
Client: Yes
Server: Yes
Login: Yes
Encryption: No
Impersonation: CVS Builtin

Keywords available:

username Username (alias: user)

password Password (alias: pass)

hostname Hostname (alias: host)

port Port

proxy Proxy server

proxyport Proxy server port (alias: proxy_port)

tunnel Proxy protocol (aliases: proxyprotocol,proxy_protocol)
proxyuser Proxy user (alias: proxy_user)

proxypassword Proxy passsord (alias: proxy_password)

The format is designed to be easily parsed by frontends. Its layout does not change between cvs versions, however lines may be
added or deleted from the output.

Specifying cvswrappers or cvsignore dumps out the internal state of these files. It is possible to have duplicates, as the list is
built up of both the client and server contents. When parsed however the client always takes precedence over the server setting.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 89/142

A.20.1 info options

-¢ Return client-side information. Returns all protocols available to the client

-s Return server-side information. Returns protocols that a client can use to communicate with the server. This does not include
local or external protocols.

-b (Where supported) list available cvsnt servers on the local network. This currently requires mdns support on the client.

-r server Find out as much as possible about a remote cvsnt server. For this command to succeed the remote server must support
the cvsnt enumeration protocol.

$ cvs info -r cvs.cvsnt.org
Server: CVSNT Public Repository
Version: Concurrent Versions System (CVSNT) 2.5.01 (Travis) Build 2010

Protocols:
gserver
pserver
sserver
sspi

Repositories:
/usr/local/cvs CVSNT Main repository

Anonymous username: CVsS
Anonymous protocol: pserver
Default repository: /usr/local/cvs

Anonymous login: :pserver:cvs@cvs.cvsnt.org:/usr/local/cvs
Recommended login: :sspi:cvs.cvsnt.org:/usr/local/cvs

The layout will remain the same as much as possible in future revisions to facilitate automatic parsing. Parsers should
ignore elements that they do not understand.

A.21 log--Print out log information for files

» Synopsis: log [options] [files...]
* Requires: repository, working directory.
* Changes: nothing.

Display log information for files. log used to call the rcs utility rlog. Although this is no longer true in the current sources, this
history determines the format of the output and the options, which are not quite in the style of the other cvsnt commands.

The output includes the location of the rcs file, the head revision (the latest revision on the trunk), all symbolic names (tags) and
some other things. For each revision, the revision number, the author, the number of lines added/deleted and the log message are
printed. All times are displayed in Coordinated Universal Time (UTC). (Other parts of cvsnt print times in the local timezone).

Warning: log uses -R in a way that conflicts with the normal use inside cvsnt (Section A.5).
A.21.1 log options
By default, log prints all information that is available. All other options restrict the output.

-B bugid Only select revisions which are related to a single bug.

-b Print information about the revisions on the default branch, normally the highest branch on the trunk.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 90/ 142

-d dates Print information about revisions with a checkin date/time in the range given by the semicolon-separated list of dates.
The date formats accepted are those accepted by the -D option to many other cvsnt commands (Section A.5). Dates can be
combined into ranges as follows:
dl<d2,d2>d1l Select the revisions that were deposited between d1 and d2.
<d, d> Select all revisions dated d or earlier.
d<, >d Select all revisions dated d or later.

d Select the single, latest revision dated d or earlier.

The > or < characters may be followed by = to indicate an inclusive range rather than an exclusive one.
Note that the separator is a semicolon (;).

-h Print only the name of the rcs file, name of the file in the working directory, head, default branch, access list, locks, symbolic
names, and suffix.

-1 Local; run only in current working directory. (Default is to run recursively).

-N Do not print the list of tags for this file. This option can be very useful when your site uses a lot of tags, so rather than
"more"’ing over 3 pages of tag information, the log information is presented without tags at all.

-R Print only the name of the rcs file.

-rrevisions Print information about revisions given in the comma-separated list revisions of revisions and ranges. The
following table explains the available range formats:
revl:rev2 Revisions revl to rev2 (which must be on the same branch).
revl::rev2 Revisions between, but not including, revl and rev2.
:rev Revisions from the beginning of the branch up to and including rev.
::rev Revisions from the beginning of the branch up to, but not including, rev.
rev: Revisions starting with rev to the end of the branch containing rev.
rev:: Revisions starting just after rev to the end of the branch containing rev.
branch An argument that is a branch means all revisions on that branch.
branchl:branch2,branchl::branch2 A range of branches means all revisions on the branches in that range.
branch. The latest revision in branch.

A bare -r with no revisions means the latest revision on the default branch, normally the trunk. There can be no space
between the -r option and its argument.

-S Supress log output when no revisions are selected within a file.

-s states Print information about revisions whose state attributes match one of the states given in the comma-separated list
states.

-T Display dates and times in the log output in Local time rather than GMT.
-t Print the same as -h, plus the descriptive text.

-w[logins] Print information about revisions checked in by users with login names appearing in the comma-separated list
logins. If logins is omitted, the user’s login is assumed. There can be no space between the -w option and its
argument.

-X Supress extended information generated only by CVSNT servers. This can be useful with some frontends that cannot parse
the extra output.

-x Generate full output. This is the default unless configured otherwise on the server.

log prints the intersection of the revisions selected with the options -B,-d, -s, and -w, intersected with the union of the revisions
selected by -b and -r.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 91/142

A.21.2 log examples

Contributed examples are gratefully accepted.

A.22 login--Cache a client password locally

* Requires: repository.

* Changes: local password cache.

* Synonyms: logon, lgn

Cache the password required for the client locally. Not all protocols require this, and some do not even support it. If you are

using a protocol that does not require this then for security reasons it is better not to use it, since the local cache is relatively easy
to find and decrypt if your local account/machine is compromised.

Do not make any assumptions about the storage of passwords in the local cache. In particular do not attempt to manipulate it
manually - its format may change without warning.

See also Section 2.9

A.22.1 login options

-p password Specify the password to use (the default is to prompt).

A.23 logout--Remove the cached entry for a password

* Requires: repository.
* Changes: local password cache.

e Synonyms:

Destroy the password cache entry for the current connection. See also Section A.22

A.23.1 logout options

none.

A.24 Is--list modules, files and directories in the repository

* Requires: repository.
* Changes: nothing.

* Synonyms: dir,list,rls

Lists the contents of the repository, and optionally the latest version information from files within the repository.

Used without any parameters, it lists the toplevel directories (modules) in the repository. This includes directories created using
the modules2 file.

The list is followed by the contents of the modules file, if available.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 92/142

A.24.1 Is options

-D date Show files current on a particular date.

-e Display in CVS/Entries format:

$ cvs ls —e CVSROOT
Listing module: CVSROOT

/checkoutlist/1.9/Wed Jan 26 19:08:06 2005/-kkv/
/commitinfo/1.10/Tue Jan 11 01:25:34 2005/-kkv/
/config/1.15/Sun Jan 23 02:15:57 2005/-kkv/

-1 Display all details. Note that the usage of the -1 option differs from other cvs commands. This is for consistency with the
unix-style Is command.

$ cvs 1ls -1 CVSROOT
Listing module: CVSROOT

checkoutlist 1.9 Wed Jan 26 19:08:06 2005 -kkwv
commitinfo 1.10 Tue Jan 11 01:25:34 2005 -kkv
config 1.15 Sun Jan 23 02:15:57 2005 —-kkv

-P Ignore (Prune) empty directories.

-q Quieter output. Do not print extraneous human-readable prompts.
-R Recurse into subdirectories.

-r tag Show files with the specified revision, tag or branch.

-T Show timestamps in local time instead of GMT.

A.25 Isacl--Show file/directory permissions

* Synopsis: Isacl [-d] [-R] [file or directory...]
* Requires: repository, sandbox.
* Changes: nothing.

e Synonyms: Isattr,listperm

List the access control lists entries for files and directories within the current sandbox. For directories also shows the owner.

Permissions on a file or directory are also supplemented by parent directories, so the lack of mention of a user does not imply or
deny access. For compatibility with older cvs versions the default is to grant permissions unless explicitly denied. This can be
changed by putting an inheritable default deny permission in the repository root.

A.25.1 Isacl options

-d List only directories, not files. By default both file and directory permisisons are listed in the output.

-R Recursively list permissions in all subdirectories.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 93/142

A.26 rlsacl--Show remote file/directory permissions

* Synopsis: rlsacl [-d] [-R] [module...]
* Requires: repository
* Changes: nothing.

* Synonyms: rlsattr,rlistperm

List permissions remotely, without reference to a local sandbox. See Section A.25

A.27 passwd--Modify a user’s password or create a user

* Requires: repository.
* Changes: remote password file.
* Synonyms: password, setpass.

Change the username/password information for a user. This command is only useful for those protocols which do not use system
passwords (such as pserver). It does not affect the real system password of the user.

Ordninary users are only able to change their own cvs password. Repository administrators can use the full funcitonality of this
command.

If invoked without a username, the current username is used. If invoked with a username, the repository administrator can change
the details of another user.

A.27.1 passwd options

-a Add user. Adds a new user entry to the password file.
-x Disable user. Changes the password so that the user cannot log in.
-X Delete user. Remove the user entry from the password file.

-r user Alias username to real system user. Before a virtual (pserver) user can log in the system needs to know which user
account to use for that user.

-R Remove system alias for user.

-D domain (Win32 only) Use the users’ domain password instead of a separate password. For security reasons this is not
recommended.

A.28 rannotate--Show who made changes to remote files

* Requires: repository.
* Changes: nothing.

* Synonyms: rann, ra

Show changes on remote files within a repository. Does not require a sandbox. See also Section A.8

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 94/142

A.29 rchacl--Change remote access control lists

Synopsis: rchacl [-R] [-r branch] [-u user] [-j branch] [-n] [-p priority] [-m message] [-a [no]{readlwritelcreateltaglcontrollalllnone }[,...]
[-d] [module...]

Requires: repository.
Changes: repository.

Synonyms: rsetacl, rsetperm

Change an access control list on a remote file or directory. Does not require a sandbox. See also Section A.9

A.30 rchown--Change owner of a remote directory

Synopsis: rchown [-R] user module...
Requires: repository.
Changes: repository.

Synonyms: rsetowner

Change the owner of a remote directory. Does not require a sandbox. See also Section A.11

A.31 rdiff--’patch’ format diffs between releases

Synopsis: rdiff [-flags] [-V vn] [-r tI-D d [-r t2I-D d2]] modules...
Requires: repository.
Changes: nothing.

Synonyms: patch, pa

Builds a Larry Wall format patch(1) file between two releases, that can be fed directly into the patch program to bring an old
release up-to-date with the new release. (This is one of the few cvsnt commands that operates directly from the repository, and
doesn’t require a prior checkout.) The diff output is sent to the standard output device.

You can specify (using the standard -r and -D options) any combination of one or two revisions or dates. If only one revision or
date is specified, the patch file reflects differences between that revision or date and the current head revisions in the rcs file.

Note that if the software release affected is contained in more than one directory, then it may be necessary to specify the -p option
to the patch command when patching the old sources, so that patch is able to find the files that are located in other directories.

A.31.1 rdiff options

These standard options are supported by rdiff (Section A.5, for a complete description of them):

-D date Use the most recent revision no later than date.

-f If no matching revision is found, retrieve the most recent revision (instead of ignoring the file).

-1 Local; don’t descend subdirectories.

-R Examine directories recursively. This option is on by default.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 95/142

-r tag Use revision tag.
In addition to the above, these options are available:

-¢ Use the context diff format. This is the default format.

-s Create a summary change report instead of a patch. The summary includes information about files that were changed or added
between the releases. It is sent to the standard output device. This is useful for finding out, for example, which files have
changed between two dates or revisions.

-t A diff of the top two revisions is sent to the standard output device. This is most useful for seeing what the last change to a
file was.

-u Use the unidiff format for the context diffs. Remember that old versions of the patch program can’t handle the unidiff format,
so if you plan to post this patch to the net you should probably not use -u.

-V vn Expand keywords according to the rules current in rcs version vn (the expansion format changed with rcs version 5).
Note that this option is no longer accepted. cvsnt will always expand keywords the way that rcs version 5 does.

A.31.2 rdiff examples

Suppose you receive mail from foo @example.net asking for an update from release 1.2 to 1.4 of the tc compiler. You have no
such patches on hand, but with cvsnt that can easily be fixed with a command such as this:

S cvs rdiff -c -r FOO1l_2 -r FOOl_4 tc | \
$$ Mail -s ’'The patches you asked for’ foo@example.net

Suppose you have made release 1.3, and forked a branch called R_1_3fix for bugfixes. R_1_3_1 corresponds to release 1.3.1,
which was made some time ago. Now, you want to see how much development has been done on the branch. This command can
be used:

$ cvs patch -s -r R_.1_3_1 -r R_1_3fix module-name

cvs rdiff: Diffing module-name

File Changelog,v changed from revision 1.52.2.5 to 1.52.2.6
File foo.c,v changed from revision 1.52.2.3 to 1.52.2.4
File bar.h,v changed from revision 1.29.2.1 to 1.2

A.32 release--Indicate that a Module is no longer in use

* Synopsis: release [-d [-f]] [-e] [-y] directories...
* Requires: Working directory.
» Changes: Working directory, history log.

* Synonyms: re, rel

This command is meant to safely cancel the effect of cvs checkout. Since cvsnt doesn’t lock files, it isn’t strictly necessary to
use this command. You can always simply delete your working directory, if you like; but you risk losing changes you may have
forgotten, and you leave no trace in the cvsnt history file (Section B.21) that you’ve abandoned your checkout.

Use cvs release to avoid these problems. This command checks that no uncommitted changes are present; that you are executing
it from immediately above a cvsnt working directory; and that the repository recorded for your files is the same as the repository
defined in the module database.

If all these conditions are true, cvs release leaves a record of its execution (attesting to your intentionally abandoning your
checkout) in the cvsnt history log.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 96 /142

A.32.1 release options

The release command supports the following command options:

-d Delete your working copy of the file if the release succeeds. If this flag is not given your files will remain in your working
directory.

-f Must be specified with -f, above. Force the the deletion of the directory even if non-cvs files are present.

-e Don’t delete any files, just delete the cvsnt administrative directories. The directory is then left in a state as if it had just been
exported.

-y Automatically assume ’yes’ to any confirmation prompts.

A.32.2 release output

Before release releases your sources it will print a one-line message if any file that is not up-to-date.

A.32.3 release examples

Release the tc directory, and delete your local working copy of the files.

$ cd .. # You must stand immediately above the
sources when you issue cvs release.
$ cvs release -d tc
You have [5] altered files in this repository.
Are you sure you want to release (and delete) directory ‘tc’: y

$

A.33 remove--Remove files from the working directory

* Requires: working directory, repository.
* Changes: working directory.

e Synonyms: rm, delete

Remove a file from the working directory, marking the file as *dead” which comes into effect after the next commit.

Files are never actually removed from the repository, only ever flagged as deleted. You can recover such a removed file by using
a combinaiton of add and commit. See also Section 8.2

As a safety measure this command will not do anything unless the physical file is already deleted or you use the -f option.

A.33.1 remove options

-f Delete the physical file as well. Remove will not complete unless the file has already been deleted or this option is given.
-1 Process this directory only.

-R Process directories recursively.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 97 /142

A.34 rename--Rename files in the repository

* Synopsis: rename [-q] source target
* Requires: working directory, repository.
¢ Changes: repository.

* Synonyms: ren,mv

Use the rename to rename or move a file within the sandbox, whilst keeping the history intact.

Rename functions depend on the capabilities of the server:

CVS Suite 2008: limited support for rename, move not supported
e CVS Suite 2009R2: rename supported, move not supported

e CVS Suite 2010: rename supported, move available but not supported

CM Suite 2008: rename and move supported

CVSNT Community Edition 2.5.03, 2.0.51 etc: due to serious bugs, rename and move not supported

CVS 1.11.x, 1.12.x etc: rename and move not available

Complex renames/move (across directories) should be avoided. If you must rename across directories then ensure that the
’destination’ directory gets committed at the same time as the ’source’ directory - otherwise the file can vanish completely.

Rename information is held at the directory level, so the rename/move is not committed to the repository until cvs commit is
called on the directory containing the file.

If another user has the file checked out they will continue to use the file under its old name until they issue a cvs update at the
directory level. CVSNT has no problems with this and both users can continue to merge each others’ changes.

A.35 rlog--Return log history of remote file

* Requires: repository.
* Changes: nothing.

* Synonyms: 1l

Return the log history of a remote file or group of files. Does not require a sandbox. See Section A.21

A.36 rtag--Mark a single revision over multiple files

* Requires: repository.
* Changes: nothing.

* Synonyms: rfreeze

Set a tag on a group of files in a repository. Does not require a sandbox. See Section A.38, also Section 5.4

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 98/142

A.37 status--Display the state of a file in the working directory

* Requires: repository, working directory.

* Changes: nothing.

e Synonyms: st,stat

Display the status of a file within the working directory. This includes any expansion options, its version, and whether it is
modified or may require updating.

The normal output from the status command is as follows:

$ cvs status cvs.dbk

File: cvs.dbk Status: Up-to-date
Working revision: 1.1.2.36
Repository revision: 1.1.2.36 /usr/local/cvs/cvsnt/doc/cvs.dbk, v
Expansion option: o
Commit Identifier: 75a042064840566¢
Sticky Tag: CVSNT_2_0_x (branch: 1.1.2)
Sticky Date: (none)
Sticky Options: -ko
Merge From: (none)

The layout of this output will remain the same across versions, although information may be added or removed.
A more terse form of status is produced by using the -q option, in which case only the checkout status is displayed:

$ cvs status —-g cvs.dbk
File: cvs.dbk Status: Up-to-date

A.37.1 status options

-v Verbose format. Append the tag information for each selected file.
-1 Process this directory only.
-R Process directories recursively.

-q Display only a quick summary of the status of each file. Specifying a second -q option reduces the output still further, by
supressing output for up to date files.

-X Display shorter output produced by cvs 1.x. This output may be required for parsing with older tools.

-x Display full cvsnt status details. Default, unless overridden on the server.

A.38 tag--Create a tag or branch

* Requires: repository, working directory.
* Changes: repository.

e Synonyms: ta,freeze

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 99/142

Create or modify a tag in the repository.

A tag is a snapshot of a single moment in time in the repository. Normally a tag would be applied to entire directories, although
it is possible to tag individual files if required. See also Section 5.4

A branch is a unit of parallel development, which may or may not be kepy in sync with the main trunk. See also Chapter 6

Creating a tag or branch does not change the working directory. To create and work with a branch it is also necessary to use the
cvs update command to move your working directory onto that branch.

A.38.1 tag options

-A Make an alias of an existing branch (requires -r). See Section 5.9
-b Make a branch tag.

-¢ Check that the working files are unmodified before tagging.

-d Delete the named tag. Deletion of branches is not recommended.
-F Move the tag if it already exists. Not recommended for branches.

-B Allow -d and -F to be applied to branch tags. Use of this option is not recommended as it does not affect the revisions within
the branch and can result in them being orphaned.

-f Force a head revision match if the existing branch is not found.
-1 Process local directory only.

-M Create a floating, or *'magic’ branch. A floating branch always points to the head of its parent branch, unless a revision is
checked into it. Once a revision is added it becomes a normal fixed branch.

-R Process directories recursively.
-r rev Select files based on existing tag/branch/revision.

-D date Select files current on a specific date.

A.39 unedit--Mark edit as finished without committing

* Requires: repository, working directory.
* Changes: working directory.
e Synonyms:

Discard any changes made and finish editing a file without committing. It may also be necessary to run an update command to
retrieve the latest version of the file.

Unediting also sends out a notification to other users if the server is configured to do this. It will mark the working directory file
as read only. See also Section 11.6

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 100/ 142

A.39.1 unedit options

-b bugid Unedit only files marked as edited with bugid.

-1 Process local directory only.

-m message Specify the reason for this unedit. The message is sent to the trigger and notify programs on the server.
-r Revert file only. Do not perform unedit. This merely copies the unedited copy back onto the working copy.

-R Process directories recursively.

-u username (repository administrators only) perform an unedit for another user.

-w Leave working directory file writable after the unedit.

A.40 update--Bring work tree in sync with repository

¢ Requires: repository, working directory.
* Changes: working directory.

e Synonyms: up,upd

After you’ve run checkout to create your private copy of source from the common repository, other developers will continue
changing the central source. From time to time, when it is convenient in your development process, you can use the update
command from within your working directory to reconcile your work with any revisions applied to the source repository since
your last checkout or update.

It is unwise to let your local working directory become out of sync with others for too long. Depending on your working model
it may be necessary to run updates daily or even hourly to keep in step. On the other hand if you are the only developer on a
project it may not be necessary to update at all.

If updating is left too long, then conflicts that arise get progressively harder to fix over time as the code diverges. On the other
hand frequent updating may mean that there are no conflicts to deal with at all.

A.40.1 update options
These standard options are available with update (Section A.5, for a complete description of them):

-e [bugid] Automatically edit modified/merged files.
-E [bugid] Automatically edit modified/merged files and unmodified files.

-D date Use the most recent revision no later than date. This option is sticky, and implies -P. See Section 5.11, for more
information on sticky tags/dates.

-f Only useful with the -D date or -r tag flags. If no matching revision is found, retrieve the most recent revision (instead of
ignoring the file).

-F filename Write clean repository copy to this filename. This is most often used when you need to perfom a visual side-by-
side diff - for which you need two complete copies of the file, but where the *name’ of the file for that point in time may
not be known. ie: you haVe the file with £i1ename ’blat.htm’ in your current directory and you want to compare it to the
HEAD revision: but at HEAD it may have a different name (someone has used the rename command). You can use the
diff without knowing the revisions filename, but you can’t use the checkout unless you know the actual filename for that
point in time. So this is the situation where this flag of the udpate command can be used.

-k kflag Process keywords according to kf1ag. See Chapter 13. This option is sticky; future updates of this file in this work-
ing directory will use the same kf1lag. The status command can be viewed to see the sticky options. See Section A.37,
for more information on the status command.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 101/142

-1 Local; run only in current working directory. Chapter 7.
-P Prune empty directories. See Section 8.5.

-p Pipe files to the standard output.

-R Update directories recursively (default). Chapter 7.

-r rev Retrieve revision/tag rev. This option is sticky, and implies -P. See Section 5.11, for more information on sticky tags/-
dates.

These special options are also available with update.

-3 Provide 3-way conflicts.
-A Reset any sticky tags, dates, or -k options. See Section 5.11, for more information on sticky tags/dates.

-B bugid Set the boundary of a -j merge to revisions marked with a particular bug. This is used to extract individual bug fixes
from one branch to another.

If there are other revisions unrelated to the bug required to merge all the differences, these will also be merged. This option
is much more useful in quiet or controlled repositories where this happens infrequently.

-b Perform the -j merge from the branchpoint, ignoring mergepoints.

-C Overwrite locally modified files with clean copies from the repository (the modified file is saved in .#file.revision,
however).

-c If the file is edited, update the base revision copy to the latest revision. If this option is not used an unedit will always revert
to the same revision that is edited, not the latest revision in the repository.

-d Create any directories that exist in the repository if they’re missing from the working directory. Normally, update acts only
on directories and files that were already enrolled in your working directory.

This is useful for updating directories that were created in the repository since the initial checkout; but it has an unfortunate
side effect. If you deliberately avoided certain directories in the repository when you created your working directory (either
through use of a module name or by listing explicitly the files and directories you wanted on the command line), then
updating with -d will create those directories, which may not be what you want.

-I name Ignore files whose names match name (in your working directory) during the update. You can specify -I more than
once on the command line to specify several files to ignore. Use -I'! to avoid ignoring any files at all. Section B.19, for
other ways to make cvsnt ignore some files.

-m Perform the -j merge based on the last mergepoint. This is the default.

-S Perform limited selection between conflicting case sensitive names on a case insensitive system. This option can be used
to checkout files with conflicting names however it is not a solution to the problem - the conflict should be fixed in the
repository.

-t Update using the last checkin time of the file not the current time. Do not use this option if you are using a makefile based
system as it will cause problems with the build process. On other systems be aware of any side effects before using this
option.

-Wspec Specify file names that should be filtered during update. You can use this option repeatedly. Use -W ! avoid using
the default wrappers. spec can be a file name pattern of the same type that you can specify in the .cvswrappers file.
Section B.3.

-jrevision With two -j options, merge changes from the revision specified with the first -j option to the revision specified
with the second j option, into the working directory.

With one -j option, merge changes from the ancestor revision to the revision specified with the -j option, into the working
directory. The ancestor revision is the common ancestor of the revision which the working directory is based on, and the
revision specified in the -j option.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 102/ 142

Note that using a single -j tagname option rather than -j branchname to merge changes from a branch will often not
remove files which were removed on the branch. Section 6.9, for more.

In addition, each -j option can contain an optional date specification which, when used with branches, can limit the chosen
revision to one within a specific date. An optional date is specified by adding a colon (:) to the tag: -jSymbolic_
Tag:Date_Specifier.

Chapter 6.

A.40.2 update output

update and checkout keep you informed of their progress by printing a line for each file, preceded by one character indicating
the status of the file:

U file The file was brought up to date with respect to the repository. This is done for any file that exists in the repository but
not in your source, and for files that you haven’t changed but are not the most recent versions available in the repository.

P £ile Like U, but the cvsnt server sends a patch instead of an entire file. These two things accomplish the same thing.

A file The file has been added to your private copy of the sources, and will be added to the source repository when you run
commit on the file. This is a reminder to you that the file needs to be committed.

R file The file has been removed from your private copy of the sources, and will be removed from the source repository when
you run commit on the file. This is a reminder to you that the file needs to be committed.
M file The file is modified in your working directory.

M can indicate one of two states for a file you're working on: either there were no modifications to the same file in the
repository, so that your file remains as you last saw it; or there were modifications in the repository as well as in your copy,
but they were merged successfully, without conflict, in your working directory.

cvsnt will print some messages if it merges your work, and a backup copy of your working file (as it looked before you ran
update) will be made. The exact name of that file is printed while update runs.

C file A conflict was detected while trying to merge your changes to £ile with changes from the source repository. file
(the copy in your working directory) is now the result of attempting to merge the two revisions; an unmodified copy of
your file is also in your working directory, with the name .#file.revision where revision is the revision that your
modified file started from. Resolve the conflict as described in Section 11.3. (Note that some systems automatically purge
files that begin with .# if they have not been accessed for a few days. If you intend to keep a copy of your original file, it is
a very good idea to rename it.) Under vms, the file name starts with __ rather than .#.

? file file isin your working directory, but does not correspond to anything in the source repository, and is not in the list of
files for cvsnt to ignore (see the description of the -I option, and Section B.19).

A.41 version--Display client and server versions.

* Requires: nothing.
* Changes: nothing.

e Synonyms: ve,ver

Display the version of the client in use. Also displays the version of the remote server if that information is available.
A.41.1 version options

-q Display only the version number of the local client, not other information.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 103/ 142

A.42 watch--Watch for changes in a file

* Requires: repository, working directory.
* Changes: repository.

e Synonyms:

Add yourself to the list of watchers for a file. Watchers are notified via the notify script whenever an action they are interested in
happens. See Section 11.6

A.42.1 watch options

-1 Process local directory only.
-R Process directories recursively.

-a Specify what actions to watch. One of edit,unedit,commit,all,none.

A.43 watchers--list watched files

* Requires: repository, working directory.
* Changes: nothing.

e Synonyms:

Display the list of files that are being watched, and what is being watched about them. See Section 11.6

A.43.1 watchers options

-1 Process local directory only.

-R Process directories recursively.

A.44 xdiff--External diff

* Requires: repository, working directory.
* Changes: nothing.
e Sysnonyms: xd

Run an external diff defined by the cvswrappers file on the server. The output and options for this option vary depending on
what is run on the server-side diff, however the common options are listed below.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 104 /142

A.44.1 xdiff options

-D date Diff revision for date against working file. Specifying the -D option twice causes the diff to be against the two dated
revisions instead of the working file.

-N Also diff added and removed files.

-R Process directories recursively.

-1 Process local directory only.

-o xdiff-options Pass extra arguments and options to the external xdiff program.

-r rev Diff revision or tag against working file. Specifying a second -r option causes the diff to be against two specified revisions
instead of the working file.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 105/ 142

Appendix B

Reference manual for Administrative files

Inside the repository, in the directory SREAL_CVSROOT/CVSROOT, there are a number of supportive files for cvsnt. You can
use cvsnt in a limited fashion without any of them, but if they are set up properly they can help make life easier. For a discussion
of how to edit them, see Section 2.4.

The most important of these files is the modules file, which defines the modules inside the repository.

B.1 The modules file

The modules file records your definitions of names for collections of source code. cvsnt will use these definitions if you use
cvsnt to update the modules file (use normal commands like add, commit, etc).

The modules file may contain blank lines and comments (lines beginning with #) as well as module definitions. Long lines can
be continued on the next line by specifying a backslash (\) as the last character on the line.

There are three basic types of modules: alias modules, regular modules, and ampersand modules. The difference between them
is the way that they map files in the repository to files in the working directory. In all of the following examples, the top-level
repository contains a directory called first-dir, which contains two files, filel and file2, and a directory sdir. first-dir/sdir
contains a file sfile.

B.1.1 Alias modules

Alias modules are the simplest kind of module:

mname -a aliases... This represents the simplest way of defining a module mname. The -a flags the definition as a simple
alias: cvsnt will treat any use of mname (as a command argument) as if the list of names aliases had been specified
instead. aliases may contain either other module names or paths. When you use paths in aliases, checkout creates all
intermediate directories in the working directory, just as if the path had been specified explicitly in the cvsnt arguments.

For example, if the modules file contains:

amodule -a first-dir

then the following two commands are equivalent:

$ cvs co amodule
$ cvs co first-dir

and they each would provide output such as:

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 106/ 142

cvs checkout: Updating first-dir

U first-dir/filel

U first-dir/file2

cvs checkout: Updating first-dir/sdir
U first-dir/sdir/sfile

B.1.2 Regular modules

mname [options] dir [£iles...] In the simplest case, this form of module definition reduces to mname dir. This defines
all the files in directory dir as module mname. dir is a relative path (from $CVSROOT) to a directory of source in
the source repository. In this case, on checkout, a single directory called mname is created as a working directory; no
intermediate directory levels are used by default, even if dir was a path involving several directory levels.

For example, if a module is defined by:

regmodule first-dir

then regmodule will contain the files from first-dir:

$ cvs co regmodule

cvs checkout: Updating regmodule

U regmodule/filel

U regmodule/file?2

cvs checkout: Updating regmodule/sdir
U regmodule/sdir/sfile

$

By explicitly specifying files in the module definition after dir, you can select particular files from directory dir. Here is an
example:

regfiles first-dir/sdir sfile

With this definition, getting the regfiles module will create a single working directory regfiles containing the file listed, which
comes from a directory deeper in the cvsnt source repository:

$ cvs co regfiles
U regfiles/sfile
$

B.1.3 Ampersand modules

A module definition can refer to other modules by including &module in its definition.

mname [options] &module...

Then getting the module creates a subdirectory for each such module, in the directory containing the module. For example, if
modules contains

ampermod &first-dir

then a checkout will create an ampermod directory which contains a directory called first-dir, which in turns contains all the
directories and files which live there. For example, the command

$ cvs co ampermod

will create the following files:

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 107 /142

ampermod/first-dir/filel
ampermod/first-dir/file2
ampermod/first-dir/sdir/sfile

There is one quirk/bug: the messages that cvsnt prints omit the ampermod, and thus do not correctly display the location to
which it is checking out the files:

$ cvs co ampermod

cvs checkout: Updating first-dir

U first-dir/filel

U first-dir/file2

cvs checkout: Updating first-dir/sdir
U first-dir/sdir/sfile

$

Do not rely on this buggy behavior; it may get fixed in a future release of cvsnt.

B.1.4 Excluding directories

An alias module may exclude particular directories from other modules by using an exclamation mark (!) before the name of
each directory to be excluded.

For example, if the modules file contains:

exmodule —-a !first-dir/sdir first-dir

then checking out the module exmodule will check out everything in first-dir except any files in the subdirectory first-dir/sdir.

B.1.5 Module options

Either regular modules or ampersand modules can contain options, which supply additional information concerning the module.

-d name Name the working directory something other than the module name.

-e prog Specify a program prog to run whenever files in a module are exported. prog runs with a single argument, the module
name.

-i prog Specify a program prog to run whenever files in a module are committed. prog runs with a single argument, the
full pathname of the affected directory in a source repository. The commitinfo, loginfo, and verifymsg files provide other
ways to call a program on commit.

-0 prog Specify a program prog to run whenever files in a module are checked out. prog runs with a single argument, the
module name.

-s status Assign a status to the module. When the module file is printed with cvs checkout -s the modules are sorted according
to primarily module status, and secondarily according to the module name. This option has no other meaning. You can use
this option for several things besides status: for instance, list the person that is responsible for this module.

-t prog Specify a program prog to run whenever files in a module are tagged with rtag. prog runs with two arguments: the
module name and the symbolic tag specified to rtag. It is not run when tag is executed. Generally you will find that taginfo
is a better solution (Section 9.3).

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 108 /142

B.1.6 How the modules file "program options" programs are run

For checkout, rtag, and export, the program is server-based, and as such the following applies:-

If using remote access methods (pserver, ext, etc.), cvsnt will execute this program on the server from a temporary directory. The
path is searched for this program.

If using "local access" (on a local or remote NFS filesystem, i.e. repository set just to a path), the program will be executed from
the newly checked-out tree, if found there, or alternatively searched for in the path if not.

The programs are all run after the operation has effectively completed.

B.2 The modules2 file

The modules2 file provides a lower level definition of modules than the modules file. Clients see the modules2 structure as if it
existed physically on the server.

B.2.1 How the modules?2 file differs from the modules file

The modules provides different types of module, which are "high level’, in that checking out a module is equivalent to calling
checkout multiple times on different directories. This approach works well for simple cases, but breaks down in the more complex
cases, causing unwanted interactions with the update command for example.

The modules2 has only one way of describing a module, but operates on a much lower level. Clients are unaware that the
directory structure that they are checking out does not actually exist, and all cvs commands behave as normal. A file or directory
defined by modules2 may have a completely different name to its real name, and updates/merging will be handled correctly even
if multiple clients checkout under different names.

Which file you choose depends on your requirements. It isn’t recommend that usage is mixed between the two files as they both
serve a similar function and it would get confusing.

B.2.2 Modules2 syntax

The modules?2 file is structured in a similar way to the familiar Windows .ini file. Each section defines a module, and within each
section is a description of the files and directories within that module.

An example modules?2 file is:

[pets]
dog
cat

[people]
brother
sister

[household]
pets
people

Checking out "household’ will create the directory structure:

household
pets
dog
cat
people
brother
sister

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 109/ 142

In this example the household’, ’pets’, and "people’ directories don’t have any files in them - they’re just containers. However
let’s say we want to put the files listing pet food in the pets directory, above all the pet specific directories.

Modules2 lets you override what goes in the root of a module, to overlay another module in it:

[pets]

/ = !petfood
dog

cat

[people]
brother
sister

[household]
pets
people

Now when we checkout we get the same directory structure as above, but the pets directory contains the contents of *petfood’.
Note also we said that we don’t want any subdirectories of petfood, using the ’!” prefix. This makes sure that the directory is
never recursed into, even during an update -d. We still get the *’dog’ and ’cat’ directory of course.

You can simply rename an entire directory tree using this method. The following:

[projectl]
/ = myproject

[project2]

/ = myproject

junk =

total_junk =

project/old_project = myproject/junk

project]l will checkout the entire myproject tree. project2 is the same, except the ’junk’ directory is removed, and moved to
project/oldproject. The total_junk directory is hidden completely.

You can also mask certain files within a directory, or certain subdirectories using an extended regular expression.

[projectl]
/ = myproject

[project?2]

/ = myproject (*\.cpp$|*\.[ch]$|x/$)
junk =

total_junk =

project/old_project = myproject/junk

Directories are subject to the same filtering, except they have a ’/* directory separator after their name. If you just want to filter
some files and allow subdirectories then add ’I*/$ as an option.

(need to be more verbose here: FIXME)
The ’+ prefix stops processing, so that entries that would be potentially recursive can be defined to be nonrecursive.

Spaces can be used in the file, delimited by quotes or using backslash escapes. File separators must always be forward slashes.

Comments are on a line beginning "#’

B.3 The cvswrappers file

Wrappers refers to a cvsnt feature which lets you control certain settings based on the name of the file which is being operated
on. The settings are -k for binary files, -x to define xdiff wrappers, -t to override default mime types, and -m for nonmergeable

text files.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 110/ 142

The basic format of the file cvswrappers is:

wildcard [option value] [option value]...

where option is one of

-m update methodology value: MERGE or COPY
-k keyword expansion value: expansion mode
-x xdiff specification value: name of xdiff DLL, plus options.
=t mime type value: new mime type

and value is a single-quote delimited value.

For example, the following command imports a directory, treating files whose name ends in .exe as binary:

cvs import -I ! -W "x.exe —-kb" first-dir vendortag reltag

The -m option specifies the merge methodology that should be used when a non-binary file is updated. MERGE means the usual
cvsnt behavior: try to merge the files. COPY means that cvs update will refuse to merge files, as it also does for files specified
as binary with -kb (but if the file is specified as binary, there is no need to specify -m *COPY’). cvsnt will provide the user with
the two versions of the files, and require the user using mechanisms outside cvsnt, to insert any necessary changes. WARNING:
do not use COPY with cvsnt 1.9 or earlier-such versions of cvsnt will copy one version of your file over the other, wiping out
the previous contents. The -m wrapper option only affects behavior when merging is done on update; it does not affect how files
are stored. See Chapter 10, for more on binary files.

The -x option specifies the external diff program used when the cvs xdiff command is used. It is followed by the name of the
xdiff library (which must always be relative to the predefined library root), and any optional parameters that the xdiff library
requires. For example, to pass all .txt files through GNU diff:

*.txt —-x "ext_xdiff diff -u —--label \"%labell%\" \"%filel%\" \"$file2%\""

B.3.1 default wrappers

There are some kinds of files which are nearly always binary, and these have been given default wrappers of -kb within cvs. You
can override these wrappers using -W ! on the command line or specifying ! in the first line of your cvswrappers files. If you do
override these be sure to warn your users, who may be expecting default behaviour.

*.a *.avi *.bin x.bmp *.bz2 *.class *.dll *.exe x.gif

.9z *.hgx x.ilk *.lib *.jar =*.Jpg *.Jjpeg *.mpg *.mpeg
*.mov *.mp3 *.ncb *x.o *.0gg *.0bj *.pdb *x.pdf *.png

*.ppt *.res *.rpm *.sit *.so *.tar *.tgz x.tif «.tiff
*.wmv x.xls x.zip

In addition, a file pattern of *.* or just * will be used as a default where no wrappers exist. This pattern may also contain addive
or subtractive wrapper options (eg -k+x), in which case it will always be applied.

B.4 The commit support files

The -i flag in the modules file can be used to run a certain program whenever files are committed (Section B.1). The files
described in this section provide other, more flexible, ways to run programs whenever something is committed.

There are three kind of programs that can be run on commit. They are specified in files in the repository, as described below. The

following table summarizes the file names and the purpose of the corresponding programs.

triggers This is the main control file that cvs uses. Most of the other commit support files are implemented through a trigger
(known as the default trigger).

commitinfo The program is responsible for checking that the commit is allowed. If it exits with a non-zero exit status the
commit will be aborted.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 111/142

verifymsg The specified program is used to evaluate the log message, and possibly verify that it contains all required fields. This
is most useful in combination with the resinfo file, which can hold a log message template (Section B.15).

The verifymsg script may or may be able to change the log message depending on the value of the RereadLogA fterVerify
setting in the config file.

loginfo The specified program is called when the commit is complete. It receives the log message and some additional informa-
tion and can store the log message in a file, or mail it to appropriate persons, or maybe post it to a local newsgroup, or...
Your imagination is the limit!

precommand The specified program is called prior to command execution, and is passed the list of arguments supplied to the
command. Returning an error from this script will terminate command execution.

postcommand The specified program is called when the command is complete, and all locks have been released from the
repository prior to returning to the user. This is useful to maintain checked-out copies of repositories and to perform cvs
actions after a commit.

premodule The specified program is called prior to entering a module. It is passed the repository, command and module name.
Returning an error from this script will terminate command execution.

Not all commands use the premodule/postmodule scripts, only those which take modules as arguments, eg. checkout,
repository commands such as rlog, rtag, etc.

postmodule The specified program is called when module processing is complete. It is passed the repository, command and
module name.

Not all commands use the premodule/postmodule scripts, only those which take modules as arguments, eg. checkout,
repository commands such as rlog, rtag, etc.

postcommit The specified program is called when a commit is complete, and all locks have been released from the repository
prior to returning to the user. This is useful to maintain checked-out copies of repositories and to perform cvs actions after
a commit.

This script has been largely superceded by the postcommand script.

historyinfo This is called when any action which causes an entry in the history file is initiated. Its standard input receives the
line to be written to the history log, in a semi-compressed format.

notify When required this file is called durin a commit, and also during edit/unedit.
keywords Define non-standard or user defined keyword mappings

script.vbs, script.js, script.pl, script.py, script.rb (Win32 only) ActiveScript trigger file. Implemented through the script trig-
ger library (script_trigger.dll).

shadow Define shadow or checked-out workspaces on the server. Implemented by the checkout trigger library.
commit_email Define templates for automatic sending of emails during commit.
tag_email Define templates for automatic sending of emails during tag

notify_email Define templates for automatic sending of emails during notify

B.4.1 The common syntax

The administrative files such as commitinfo, loginfo, recsinfo, verifymsg, etc., all have a common format. The purpose of the
files are described later on. The common syntax is described here.

Each line contains the following:

* A regular expression. This uses Perl-Compatible regular expression syntax (PCRE). On case insensitive servers this expression
is also case insensitive.

* A whitespace separator--one or more spaces and/or tabs.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 112/142

¢ shell command the commonest form, invokes a shell script using the parameters described below.

Blank lines are ignored. Lines that start with the character # are treated as comments. Long lines unfortunately can not be broken
in two parts in any way.

Each regular expression that matches the current directory name in the repository is considered for use. The first match will be
used, followed by any matching lines that are prefixed by ’+’. The rest of the line after the regular expression is used as a file
name or command-line as appropriate.

Directory and filename separators must use Unix conventions (forward slashes) on all platforms.

All files have a set of default parameters (see the description of each file for details). In addition a number of common parameters
are available to be passed to each file.

%c¢ Command currently being executed.

%d Date and time of executing command.

%h Remote host name, on client/server connections.

%u Current cvs username.

%t virtual repository name (repository alias, to be displayed to the user).
%R Physical repository name (for file access).

%S Session ID or commit ID.

%e Current value of SCVSEDITOR.

%H Local host name.

%P Local directory (temporary directory in client/server connections).
%i Client version string if supplied by the client.

%n An empty string.

% % % sign

$... CVSNT environment variable (see Appendix C), System environment variable, or User variable (see Section B.24).

You can group parameters into a single script argument using the %{} syntax.

Parameters can be sent either to the script command line, or its standard input. Options for standard input begin with %<, as
below.

% <option Send value of option to standard input.

% <{options} Send value of options to standard input on a single line.

% << text for standard input\nhello %u!\n Send the following string to standard input. This must be the last item on the line.

%<<TAG Send everything in the file until the next occurence of TAG on its own to standard input. This must be the last item
on the line.

B.5 Triggers

The triggers file defines a binary interface to the cvsnt server. The calling parameters to this interface are listed in a separate
document (The CVS Library Interface).

Each line of the file lists the location of the a trigger library to be loaded on server startup. On Win32 this line may also be the
Class ID of a COM object resident on the server.

As the server goes through each phase of operation, each trigger is called in turn. In addition a default library (called de-
fault_trigger) is called, which dispatches scripts contained in each of the files mentioned below.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 113/142

B.6 Commitinfo

The commitinfo file defines programs to execute whenever cvs commit is about to execute. These programs are used for pre-
commit checking to verify that the modified, added and removed files are really ready to be committed. This could be used, for
instance, to verify that the changed files conform to to your site’s standards for coding practice.

As mentioned earlier, each line in the commitinfo file consists of a regular expression and a command-line template. A number
of extra options are available in the commitinfo file beyond those in the generic list.

%s File name(s) that this invocation is using.
%m Commit message supplied by the user

%p Current directory name, relative to the root.

The default pattern used if none is specified is %r/%p %<s, which causes the full path to the current source repository to be
appended to the template, followed by the file names of any files involved in the commit (added, removed, and modified files).

The first line with a regular expression matching the directory within the repository will be used. If the command returns a
non-zero exit status the commit will be aborted.

If the repository name does not match any of the regular expressions in this file, the DEFAULT line is used, if it is specified.

All occurrences of the name ALL appearing as a regular expression are used in addition to the first matching regular expression
or the name DEFAULT.

Note: when cvsnt is accessing a remote repository, commitinfo will be run on the remote (i.e., server) side, not the client side
(Section 2.9).

B.7 Verifying

Once you have entered a log message, you can evaluate that message to check for specific content, such as a bug ID. Use the
verifymsg file to specify a program that is used to verify the log message. This program could be a simple script that checks that
the entered message contains the required fields.

The verifymsg file is often most useful together with the resinfo file, which can be used to specify a log message template.

Each line in the verifymsg file consists of a regular expression and a command-line template. Each line can have any combination
of the following, in addition to those listed in the common syntax.

%p Directory name relative to the current root.

%] Full path to file containing the log message.

The template must include a program name, and can include any number of arguments. If no other formatting is used %]l is
automatically added which appends the full path to the current log message file file to the template.

If the repository name does not match any of the regular expressions in this file, the DEFAULT line is used, if it is specified.
If the verification script exits with a non-zero exit status, the commit is aborted.
Note that the verification script cannot change the log message; it can merely accept it or reject it.

The following is a little silly example of a verifymsg file, together with the corresponding resinfo file, the log message template
and an verification script. We begin with the log message template. We want to always record a bug-id number on the first line
of the log message. The rest of log message is free text. The following template is found in the file /usr/cvssupport/tc.template.

BugId:

The script /usr/cvssupport/bugid.verify is used to evaluate the log message.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051

114 /142

#!/bin/sh

bugid.verify filename

#
#
#
Verify that the log message contains a valid bugid
on the first line.

#

i

f head -1 < $1 | grep ’"BugId:[]*x[0-9][0-9]x$’ > /dev/null;
exit O
else
echo "No BugId found."
exit 1
fi

The verifymsg file contains this line:

“tc /usr/cvssupport/bugid.verify

The resinfo file contains this line:

AE@ /usr/cvssupport/tc.template

B.8 Loginfo

then

The loginfo file is used to control where cvs commit log information is sent. The first entry on a line is a regular expression
which is tested against the directory that the change is being made to, relative to the $SCVSROOT. If a match is found, then the

remainder of the line is a filter program that should expect log information on its standard input.

If the repository name does not match any of the regular expressions in this file, the DEFAULT line is used, if it is specified.

All occurrences of the name ALL appearing as a regular expression are used in addition to the first matching regular expression

or DEFAULT.
The first matching regular expression is used.

Section B.4, for a description of the syntax of the loginfo file.

The user may specify a format string as part of the filter. The string is composed of a % followed by a space, or followed by a
single format character, or followed by a set of format characters surrounded by { and } as separators. The format characters are

those in the common syntax plus:

%m Message supplied by user
%'T Status string

%p Directory name relative to the current root

%s Module name, followed by the list of filenames. When used in a group this option has a special action which is designed to

mimic previous versions of cvs when the standard % {sVv} is used.
%YV Current version, pre-checkin.
%v Current version, post-checkin.
%b Bug identifier
%t Tag

%y Type

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 115/142

All other characters that appear in a format string expand to an empty field (commas separating fields are still provided).
For example, some valid format strings are %, %s, %{s}, and %{sVv}.
By default the standard input is a formatted string which mimics the behaviour of older CVS versions (see below).

For a commit the command line will be a string of tokens separated by spaces. For backwards compatibility, the first token will
be the repository subdirectory. The rest of the tokens will be comma-delimited lists of the information requested in the format
string. For example, if /u/src/master/yoyodyne/tc is the repository, % {sVv} is the format string, and three files (ChangeLog,
Makefile, foo.c) were modified, the output might be:

yoyodyne/tc Changelog,1.1,1.2 Makefile,1.3,1.4 foo.c,1.12,1.13

As another example, %{} means that only the name of the repository will be generated.

When run as part of an import or add directory, the command line the repository subdirectory followed by the text
- New Directory

or

- Imported Sources

Note: when cvsnt is accessing a remote repository, loginfo will be run on the remote (i.e., server) side, not the client side
(Section 2.9).

B.8.1 Loginfo example

The following loginfo file, together with the tiny shell-script below, appends all log messages to the file SREAL_CVSROOT/CVSROO
and any commits to the administrative files (inside the CVSROOT directory) are also logged in /usr/adm/cvsroot-log. Commits
to the progl directory are mailed to ceder.

ALL /usr/local/bin/cvs—log $REAL_CVSROOT/CVSROOT/commitlog S$SUSER
~CVSROOT /usr/local/bin/cvs—-log /usr/adm/cvsroot-log
“progl Mail -s %s ceder

The shell-script /usr/local/bin/cvs-log looks like this:

#!/bin/sh

(BElae Yoo ;
echo —n $2" ";

date;

echo;

cat) >> $1

B.8.2 Loginfo default standard input format

For both commit and import the first two lines are the following:

Update of %r/%p
In directory %H:%P

Next part is different for import and commit. For commits there comes line with the current operation/operations, namely
"Added Files:", "Removed Files:" or "Modified Files:". In the next lines there are, indented with TAB, space separated list of
added, removed or modified files. There is no such section for added directories (because one can remove empty directories only
with checkout/update with -P option, not by commit). There is instead "Directory $CVSROOT/subdirectory added to repository”
log message. For import next part (separated by empty line) is the log message:

Log Message:
sm

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 116/ 142

This part is also after commit, but for commit it is at the very end of input, and is _not_ separated by an empty line. Further parts
are for import solely. After log message, separated by empty line comes:

Status:

Next is the information about release and vendor tag (see ’cvs import’ syntax), separated of course from log message by an empty
line, namely

Vendor Tag: vendor_tag
Release Tags: release_tag

Next, separated by an empty line, is the output of the import command. The format is

X module_dir/subdir/file

where X is one letter indicator of status. The last line is the status of import command, e.g.

No conflicts created by this import

B.9 Precommand

Prior to each cvs command, this file is called to validate the command arguments. The following formatting strings are available
in addition to those in the common syntax:

%a List of arguments passed on the command line

By default %r %c %<a is used, which passes the repository, command name, and all the command arguments in the standard
input. An error (non-zero) return from this script will abort the command.

B.10 postcommand

After a command has completed, the actions in this file are executed so that you can perform operations on the repository before
returning. The following formatting strings are available in addition to those in the common syntax:

%p Last directory affected, relative to repository root

By default the string %r/%p %c is used, which passes the current directory and command on the command line.

If a command uses multiple modules, the module name used to select the line in the postcommand script is undefined. For this
reason it is recommended to use only the DEFAULT and ALL lines.

Typical uses of this would be to keep a checked-out copy of a repository.

B.11 premodule

Before parsing a module, this script is called with the command name and module, to validate or log the use of the module.
Returning nonzero from this script will terminate the operation. The following formatting strings are available in addition to
those in the common syntax:

%0 Logical module name

By default the string %r/%p %c %o is used, which passes the current directory, command and module on the command line.

Not all command pass through premodule. In particular sandbox-related commands use the information in CVS/Repository and
do not use the module system.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 117 /142

B.12 postmodule

This script is called after module processing is completed. It is passed the command name and module. The following strings
are available in addition to those in the common syntax:

%0 Logical module name

By default the string %r/%p %c %o is used, which passes the current directory, command and module on the command line.

As modules in CVSROOT/modules may be defined recursively, it is possible that many premodule calls will be made in sequence
before the first postmodule call. Scripts must be written to handle this when it occurs.

B.13 postcommit

This script is called after a commit has completed. Its use has largely been superceded by the use of the postcommand script.
The following formatting strings are available in addition to those in the common syntax:

%p Directory relative to root of last directory committed.

By default the string %r/%p is used, which passes the last directory committed.

If multiple modules or repositories are committed the module in effect when this file is parsed is undetermined, so it is recom-
mended that only the DEFAULT and ALL lines are used.

B.14 historyinfo

This script is called whenever a new line is to be written to the history file. As this can happen frequently it is not recommended
that the script interface for this command be used as it will slow down server operations. The following formatting strings are
available in addition to those in the common syntax:

%t History entry type
%w Working directory, truncated to history format

%v Affected revisions

%s Name of affected file

By default the string %tl % dl%ul % wl % sl % is used, which is the same as the line written to the history file.

B.15 rcsinfo

The resinfo file can be used to specify a form to edit when filling out the commit log. The resinfo file has a syntax similar to the
verifymsg, commitinfo and loginfo files. Section B.4.1. Unlike the other files the second part is not a command-line template.
Instead, the part after the regular expression should be a full pathname to a file containing the log message template.

If the repository name does not match any of the regular expressions in this file, the DEFAULT line is used, if it is specified.

All occurrences of the name ALL appearing as a regular expression are used in addition to the first matching regular expression
or DEFAULT.

The log message template will be used as a default log message. If you specify a log message with cvs commit -m message or
cvs commit -f £ile that log message will override the template.

Section B.7, for an example resinfo file.

When cvsnt is accessing a remote repository, the contents of resinfo at the time of the last update are used. If you edit resinfo or
its templates, you may need to update your working directory.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 118/142

B.16 notify

The notify file is called whenever a watched file is changed during commit, edit or unedit. See also Section 11.6 for more details.

In addition to the formatting strings in the common syntax, the following formatting strings are available:

%m Message supplied by user.

%b Bug identifier

%p Directory name relative to current root
%s User being notified

%t Tag or branch of file being notified

%Yy Type of notification

%f File being notified about

By default the notify file has a string designed to be compatible with older versions of cvs passed in its standard input:

Triggered %y watch on %r
By %u

B.17 keywords

The keywords file contains user defined mappings of the standard rcs keywords (see Chapter 13).

For each module listed the first line defines the module(s) that the keyword list applies to, then on subsequent lines the keywords
are listed, indented by at least one space. The special module name ALL refers to all modules, and is used by default.

ALL

Maintainer Joe Bloggs
"Foo$

Maintainer Fred Bloggs

In the example above, Joe Bloggs maintains the repository and his brother Fred maintains the Foo module on his own. The rcs
tag $Maintainer$ will be expanded differently depending on the location of any source files.

You can also redefine or remove RCS tags, for example when tracking third party sources it may be desirable for the RCS tags
from the imported sources to remain intact.

ALL
Id
Localld $f Sv

o
oo
oe

d %a %s

Listing a keyword with no definition disables its standard usage. In the example above $1d$ will no longer be considered as an
RCS keyword, and $Localld$ has been defined with the pattern previously assigned to Id.

When redefining keywords you can use any variable listed in the common syntax, plus the following:

%p Path relative to repository root
%f Filename
9%0a Author

%d Date formatted in human readable format

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 119/142

%D Date formatted in RCS format

%] File locker (not normally useful in cvsnt)
%s State (normally one of Exp or Dead)
%V Version number

%N RCS $Name$ value

%b Bug identifier(s) identified with file

% C Commit/Session identifier

%1t Branch that revision is a member of

The standard RCS keywords are defined as follows:

ALL
Author %a
Date sd
Header $r/%p/%f %v %d %a %s
CVSHeader %p/%f $v %d %a $s
Id $f v %d %a %s
Locker %1
Log 5t
Name SN
RCSfile $f
Revision v
Source $r/%p/%f
State %s
CommitId %C
Branch st

B.17.1 Storing user defined information using keywords
The keywords file is parsed on checkout, which means it isn’t useful for storing environment variables or other dynamic data. To
store such data user defined variables (see Section B.24) can be used.
For example, using the following keywords file
ALL
Weather SWEATHER
the definition of WEATHER be defined during commit as a user defined variable

$ cvs —-s WEATHER=Sunny commit -m "Fix stuff" foo.c

E is then associated with that revision for future checkouts.

B.18 Email notification

CVSNT contains a trigger library which is capable of sending notification emails on commit, tag or notify. It allows you to put
any contents in the emails, but the output format is fairly simple - it is no substitute for a purpose designed notification program.

Email sending is disabled by default. To configure it for use you must do the following.

Compatibility note: Programs which try to read the repository may fail on files with this data stored. If you use such software check that it still works afterwards.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 120/ 142

B.18.1 Configure the commit support files

The commit support files commit_email, tag_email and notify_email contain the names of the template files to use for commit,
tag and notify respectively. Each line in these files is a regular expression followed by a filename. The filename is always relative
to the CVSROOT directory and may not be an absolute path for security reasons.

The first matching line for each directory committed is used. If there is no match the DEFAULT line is used.
The name of the template file should also be listed in the checkoutlist file so that it is available for the script to use.

The CVSROOT/users file is used to lookup the username -> email mapping. This file is a list of colon separated username/email
pairs. If this file does not exist or the username is not listed the default domain name set in the global configuration is used.

B.18.2 Write the template

The template file is a simple text file listing the exact text of the email to send including headers. The To:, From:, Cc: and Bcc:
lines are used by the sending software to determing the addresses to use.

An example commit template is:

From: [email]
To: cvsnt_users@mycompany.com
Subject: Commit to [module]

CVSROOT : [repository]

Module name: [module]

Changes by: [email] [date]
On host: [hostname]

[begin_directory]
Directory: [directory]

begin_file]

change_type] [filename] [tag] [old_revision] -> [new_revision] [bugid]
end_file]

end_directory]

[
(
[
[

Log message:
[message]

A number of replacements are done on the file to format it for final sending. This differs for each file, and is listed below.

B.18.3 Configure the server
There are two ways that CVSNT can send email. The simplest is to set the SMTP Server and default domain in the global
configuration (Control Panel in win32, /etc/cvsnt/PServer in Unix) and let the internal SMTP client send the emails.

This will not work in the case where authenticaton is required or the server is not capable of SMTP. In these cases you instead set
the Email Command. This command should take a list of 'to’ addresses as parameters, and a raw RFC822 email as its standard
input.

A suitable configuration for Unix systems is

/usr/sbin/sendmail -1i

Similar programs exist for Win32.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 121/142

B.18.4 Keywords used in template files
The following are the global keywords used in the email template files.

[hostname] Client hostname, it known

[repository] Repository name

[commitid] or [sessionid] Session identifier
[server_hostname] Local hostname of server

[user] User who is performing the action

[email] Email address, as looked up from CVSROOT/users
[date] Date/time of action

[message] Message associated with action, if any

[module] Module associated with action

[begin_directory] .. [end_directory] Lines between these tags (which must be on their own on the line) are repeated for each
directory referenced by the operation.

[begin_file] .. [end_file] Lines between these tags (which must be on their own on the line) are repeated for each file referenced
by the operation. These tags can only exist inside begin/end directory tags.

[directory] Current directory

[filename] Curent file

Each type of template also has its own keywords that is uses:
B.18.4.1 commit emails

[old_revision] Revision number of previous revision.
[new_revision] Revision number of new revision.
[tag] Tag for file.

[change_type] Code for change made by this commit.. 'M’, ’A’, etc.
B.18.4.2 tag emails

[tag_type] Type of tag operation.
[action] What is being done with the tag.
[tag] Tag for file

[revision] File revision that is being tagged.
B.18.4.3 notify emails

[bugid] Bug identifier(s) associated with this notification.

[tag] Tag name of file

[notify_type] Notification type

[to_user] Mapped user/e-mail to notify from CVSROOT/users file

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 122 /142

B.19 Ignoring files via cvsignore

There are certain file names that frequently occur inside your working copy, but that you don’t want to put under cvsnt control.
Examples are all the object files that you get while you compile your sources. Normally, when you run cvs update, it prints a
line for each file it encounters that it doesn’t know about (Section A.40.2).

cvsnt has a list of files (or sh(1) file name patterns) that it should ignore while running update, import and release. This list is
constructed in the following way.

* The list is initialized to include certain file name patterns: names associated with cvsnt administration, or with other common
source control systems; common names for patch files, object files, archive files, and editor backup files; and other names that
are usually artifacts of assorted utilities. Currently, the default list of ignored file name patterns is:

core RCSLOG tags TAGS RCS SCCS .make.state .nse_depinfo #* .#* cvslog.x ,*
CVS CVS.adm .del-% *.a x.0lb %x.0 *.0bj *x.s0 *.Z x~ x.0ld *x.elc x.1ln *.bak ».BAK
*.0rig *.rej *.exe x.dll *x.pdb *.lib x.ncb *.ilk *x.exp *.suo .DS_Store _S$x *$
*.1lo x.pch x.idb *.class ~x*

* The per-repository list in SREAL_CVSROOT/CVSROOT/cvsignore is appended to the list, if that file exists.
* The per-user list in .cvsignore in your home directory is appended to the list, if it exists.

* Any entries in the environment variable $CVSIGNORE is appended to the list.

* Any -I options given to cvsnt is appended.

* As cvsnt traverses through your directories, the contents of any .cvsignore will be appended to the list. The patterns found in
.cvsignore are only valid for the directory that contains them, not for any sub-directories.

In any of the 5 places listed above, a single exclamation mark (!) clears the ignore list. This can be used if you want to store any
file which normally is ignored by cvsnt.

Specifying -I'! to cvs import will import everything, which is generally what you want to do if you are importing files from a
pristine distribution or any other source which is known to not contain any extraneous files. However, looking at the rules above
you will see there is a fly in the ointment; if the distribution contains any .cvsignore files, then the patterns from those files will
be processed even if -1 ! is specified. The only workaround is to remove the .cvsignore files in order to do the import. Because
this is awkward, in the future -I ! might be modified to override .cvsignore files in each directory.

Note that the syntax of the ignore files consists of a series of lines, each of which contains a space separated list of filenames.
This offers no clean way to specify filenames which contain spaces, but you can use a workaround like foo?bar to match a file
named foo bar (it also matches fooxbar and the like). Also note that there is currently no way to specify comments.

B.20 The checkoutlist file

It may be helpful to use cvsnt to maintain your own files in the CVSROOT directory. For example, suppose that you have a
script logcommit.pl which you run by including the following line in the commitinfo administrative file:

ALL SREAL_CVSROOT/CVSROOT/logcommit .pl

To maintain logcommit.pl with cvsnt you would add the following line to the checkoutlist administrative file:

logcommit.pl

The format of checkoutlist is one line for each file that you want to maintain using cvsnt, giving the name of the file.

Files in checkoutlist must always be relative to and below CVSROOT. Attempting to checkout files outside these constraints is
an error.

After setting up checkoutlist in this fashion, the files listed there will function just like cvsnt’s built-in administrative files. For
example, when checking in one of the files you should get a message such as:

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 123 /142

cvs commit: Rebuilding administrative file database

and the checked out copy in the CVSROOT directory should be updated.
Note that listing passwd (Section 2.9.4.1) in checkoutlist is not allowed for security reasons.

For information about keeping a checkout out copy in a more general context than the one provided by checkoutlist, see Sec-
tion B.22.1.

B.21 The history file

The file SREAL_CVSROOT/CVSROOT/history is used to log information for the history command (Section A.17). This file
must be created to turn on logging.

The file format of the history file is documented only in comments in the cvsnt source code, but generally programs should use
the cvs history command to access it anyway, in case the format changes with future releases of cvsnt.

For new installations it is preferred to setup auditiing rather than use the history file. In a future release the history file will be
deprecated.

B.22 The shadow file

The CVSROOT/shadow file is used by the checkout plugin to specify directories that will be automatically updated on checkout
or tag.

In order for the shadow file to have any effect the "Automatic checkout extension" plugin must be enabled in the CVSNT Server
control panel.

B.22.1 Keeping a checked out copy

It is often useful to maintain a directory tree which contains files which correspond to the latest version in the repository. For
example, other developers might want to refer to the latest sources without having to check them out, or you might be maintaining
a web site with cvsnt and want every checkin to cause the files used by the web server to be updated.

The way to do this is by having a line in the CVSROOT/shadow. Here is an example (this should all be on one line):

~“cyclic-pages HEAD /u/www/local-docs

This will cause checkins to repository directories starting with cyclic-pages to update the checked out tree in /u/www/local-docs.

Note that if the shadow copy does not exist already it will be created by the execution of the shadow command. Likewise if a
shadow copy exists and new directories have been added to the module then these directories and files will also be checked out
into the shadow copy. So it will always be a true representation of the current state of the module.

The shadow file works only on the physical file system level (inside the repository). This means that a module specified in the
regular expression must match a physical module name in order to be recognized.

For example if you have created virtual modules inside the CVSROOT/modules file or CVSROOT/modules?2 file you cannot
specify such a module name in the shadow file.

B.23 ActiveScript support

On Windows platforms (Windows 2000 and later), cvsnt can use the builtin active scripting support to produce simple scripts.

To enable this functionality, enable the ’ActiveScript Plugin’ using the CVSNT Server Control Panel, and cvs add a file to the
checked out CVSROOT as follows:

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 124 /142

* script.vbs for VBScript support
* script. js for JavaScript support
* script.pl for PerlScript support

* script. rb for RubyScript support

The scripting engine you intend to use must be installed on the server - only the VBScript engine is installed by default.
Available functions are as follows:

init (command, current_date, hostname, username, virtual_repository, physical_repository, <>
session_id, editor, user_variable_array, client_version, character_set)

close

taginfo (message,directory, file_array, action, tag)

verifymsg(directory, filename)

loginfo (message, status, directory, change_array)

history (history_type, workdir, revs, name, bugid, message, dummy)

notify (message, bugid, directory, notify_user, tag, notify type, file)

precommit (name_list, message, directory)

postcommit (directory)

precommand (argument_list)

postcommand (directory)

premodule (module)

postmodule (module)

get_template (directory)

parse_keyword (keyword, directory, file, branch, author, printable_date, rcs_date, locker, —
state, version, name, bugid, commitid, global_properties, local_properties)

prercsdiff (file, directory, oldfile, newfile, diff_type, options, oldversion, newversion)

rcsdiff (file, directory, oldfile, newfile, diff, diff_ type, options, oldversion, newversion <>
, added, removed)

Functions should return O if successful. Arguments are strings, except where the name ends in _list which are arrays of strings,
or _array, which are associative arrays (name=value).

The exceptions to this is loginfo, which is passed an array of structures containing filename, rev_old and rev_new.
Also the get_template and parse_keyword functions, which are expected to return a string or null.

The script has access to a server object, called Server, which contains the following functions:

Trace (tracelevel, message)
Warning (message)
Error (message)

An example of all these functions is available in the cvsnt source tree, called script .vbs inthe contrib_nt directory.

B.24 Expansions in administrative files

Sometimes in writing an administrative file, you might want the file to be able to know various things based on environment
cvsnt is running in. There are several mechanisms to do that.

To find the home directory of the user running cvsnt (from the HOME environment variable), use ~ followed by / or the end of
the line. Likewise for the home directory of user, use ~user. These variables are expanded on the server machine, and don’t
get any reasonable expansion if pserver (Section 2.9.4) is in use; therefore user variables (see below) may be a better choice to
customize behavior based on the user running cvsnt.

One may want to know about various pieces of information internal to cvsnt. A cvsnt internal variable has the syntax ${varia
ble}, where variable starts with a letter and consists of alphanumeric characters and _. If the character following variable
is a non-alphanumeric character other than _, the { and } can be omitted. The cvsnt internal variables are:

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 125/142

CVSROOT This is the name of the current cvsnt repository as the user sees it.
VIRTUAL_CVSROOT This is the name of the current cvsnt repository as the user sees it.

REAL_CVSROOT This is the physical location of the current cvsnt repository. Avoid displaying this value to users as it is an
information leak.

CVSEDITOR
VISUAL
EDITOR These all expand to the same value, which is the editor that cvsnt is using. Section A.4, for how to specify this.

USER Username of the user running cvsnt (on the cvsnt server machine). When using pserver, this is the user specified in the
repository specification which need not be the same as the username the server is running as (Section 2.9.4.1).

CVSPID Parent process ID of the cvsnt process.
SESSIONID

COMMITID Unique Session ID of cvsnt process. This is a random string of printable characters that may be up to 256
characters long.

If you want to pass a value to the administrative files which the user who is running cvsnt can specify, use a user variable. To
expand a user variable, the administrative file contains $variable. To set a user variable, specify the global option -s to cvsnt,
with argument variable=value. It may be particularly useful to specify this option via .cvsre (Section A.3).

For example, if you want the administrative file to refer to a test directory you might create a user variable TESTDIR. Then if
cvsnt is invoked as

cvs —-s TESTDIR=/work/local/tests

and the administrative file contains sh $TESTDIR/runtests, then that string is expanded to sh /work/local/tests/runtests.

Environment variables passed to administrative files are:

CVS_USER The cvsnt-specific username provided by the user, if it can be provided (currently just for the pserver access
method), and to the empty string otherwise. (CVS_USER and USER may differ when SREAL_CVSROOT/CVSROOT/passwd
is used to map cvs usernames to system usernames.)

B.25 The CVSROOT/config configuration file

The administrative file config contains various miscellaneous settings which affect the behavior of cvsnt. The syntax is slightly
different from the other administrative files. Variables are not expanded. Lines which start with # are considered comments.
Other lines consist of a keyword, =, and a value. Note that this syntax is very strict. Extraneous spaces or tabs are not permitted.

Currently defined keywords are:

SystemAuth=value If value is yes, then pserver should check for users in the system’s user database if not found in CVS-
ROOT/passwd. If it is no, then all pserver users must exist in CVSROOT/passwd. The default is yes. For more on
pserver, see Section 2.9.4.

TopLevelAdmin=value Modify the checkout command to create a CVS directory at the top level of the new working direc-
tory, in addition to CVS directories created within checked-out directories. The default value is no.

This option is useful if you find yourself performing many commands at the top level of your working directory, rather than
in one of the checked out subdirectories. The CVS directory created there will mean you don’t have to specify CVSROOT
for each command. It also provides a place for the CVS/Template file (Section 2.3).

AclMode=value Select the access control list mode. One of 3 values:

* none - No extra access control is done on this repository.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 126 /142

* compat (default) - Default access mode is to allow access.

* normal - Default access mode is to deny access.

LockDir=directory This option is ignored unless the lockserver is disabled. It is accepted only for compatibility with older
systems. This option will be removed in the near future.

Put cvsnt lock files in directory rather than directly in the repository. This is useful if you want to let users read from
the repository while giving them write access only to directory, not to the repository. You need to create directory,
but cvsnt will create subdirectories of directory as it needs them. For information on cvsnt locks, see Section 11.5.

Before enabling the LockDir option, make sure that you have tracked down and removed any copies of cvsnt 1.9 or older.
Such versions neither support LockDir, nor will give an error indicating that they don’t support it. The result, if this is
allowed to happen, is that some cvsnt users will put the locks one place, and others will put them another place, and
therefore the repository could become corrupted. CVS 1.10 does not support LockDir but it will print a warning if run on
a repository with LockDir enabled.

LockServer=hostname|[:port] Uses the cvsnt lock server to handle locking rather than using files in the repository. This is
useful if you want to let users read from the repository while giving them write access only to directory, not to the
repository. For information on cvsnt locks, see Section 11.5. cvsnt 2.0.15 and above use the LockServer by default and
other methods of locking are depreciated. You can override this behaviour by using the line LockServer=none. Note
however that future versions may not allow this override. See also Section 3.11

LogHistory=value Control what is logged to the CVSROOT/history file. Default of TOFEWGCMAR (or simply all) will
log all transactions. Any subset of the default is legal. (For example, to only log transactions that modify the *,v files, use
LogHistory=TMAR.)

RereadLogAfterVerify=value If enabled the log message parsed by verifymsg is reread after the script has run. The default
behavoiur is to not reread this file.

Watcher=name Set a watcher who sees all edit/unedit/commit notifications via the CVSROOT/notify script. The watcher sees
all notificaitons regardless of an existing edit/watch on the file, which for a large commit could be a lot of files. It is
therefore recommended that the notify script completes as fast a possible. Using a custom trigger library or COM interface
is recommended for best efficiency.

B.26 The server configuration files

The CVSNT global server configuration contains information with affects all repositories.

On Win32, this information is stored in the registry and is normaly only manipulated via the cvsnt server control panel. On Unix,
a text file, normally /etc/cvsnt/PServer is used to store most of this information.

See the PServer.example file for the list of current available settings.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 127 /142

Appendix C

All environment variables which affect CVS

This is a complete list of all environment variables that affect cvsnt.

$CVSIGNORE A whitespace-separated list of file name patterns that cvsnt should ignore. Section B.19.
$CVSWRAPPERS A whitespace-separated list of file name patterns that cvsnt should treat as wrappers. Section B.3.

$CVSREAD If this is set, checkout and update will try hard to make the files in your working directory read-only. When this
is not set, the default behavior is to permit modification of your working files.

$CVSUMASK Controls permissions of files in the repository. See Section 2.2.2.

$CVSROOT Should contain the full pathname to the root of the cvsnt source repository (where the rcs files are kept). This
information must be available to cvsnt for most commands to execute; if $CVSROOT is not set, or if you wish to override
it for one invocation, you can supply it on the command line: cvs -d cvsroot cvs_command... Once you have checked out
a working directory, cvsnt stores the appropriate root (in the file CVS/Root), so normally you only need to worry about
this when initially checking out a working directory.

$EDITOR, $CVSEDITOR, $VISUAL Specifies the program to use for recording log messages during commit. $CVSEDI-
TOR overrides SEDITOR. See Section 1.3.2.

$PATH If $resBIN is not set, and no path is compiled into cvsnt, it will use $PATH to try to find all programs it uses.
$HOME
$HOMEPATH

$HOMEDRIVE Used to locate the directory where the .cvsre file, and other such files, are searched. On Unix, cvsnt just checks
for HOME. On Windows, the system will set HOMEDRIVE, for example to d: and HOMEPATH, for example to \joe.
On Windows 95, you’ll probably need to set HOMEDRIVE and HOMEPATH yourself.

$CVS_EXT
$CVS_RSH Specifies the external program which cvsnt connects with, when :ext: access method is specified. This replaces

the CVS_RSH environment used in older implementations of cvs.

The CVS_EXT variable parsed as a formatting string specifying the command to pass to invoke the remote server. The
default string is: ssh -1 %u %h The %u parameter is replaced with the username specified in the CVSROOT (or the
current username if none is specified) and the %h parameter is replaced with the hostname specified in the CVSROOT.

The CVS_EXT string has the string * cvs server’ appended to it, and this is then passed to the command processor for
execution.

Section 2.9.2.

$CVS_CLIENT_PORT Used in client-server mode when accessing the server via Kerberos, GSSAPI, or cvsnt’s password
authentication if the port is not specified in SCVSROQOT. Section 2.9

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 128 /142

$CVS_CLIENT_LOG Used for debugging only in client-server mode. If set, everything sent to the server is logged into
$CVS_CLIENT_LOG.in and everything sent from the server is logged into $CVS_CLIENT_LOG.out.

$CVS_SERVER_LOG Used for debugging only in client-server mode. If set, everything sent to the server is logged into
$CVS_SERVER_LOG.in and everything sent from the server is logged into $CVS_SERVER_LOG.out.

$CVS_SERVER_SLEEP Used only for debugging the server side in client-server mode. If set, delays the start of the server
child process the specified amount of seconds so that you can attach to it with a debugger.

$CVS_DIR Used by the client to find the lockserver when automatically executing it. If not defined the client looks in the
system path.

$CVSLIB Location of the libraries and protocol DLLs used by cvsnt. Not used on Win32.
$CVSCONF Location of the global configuration settings file. Not used on Win32.

$COMSPEC Used under DOS/Windows and OS/2 only. It specifies the name of the command interpreter and defaults to
cmd.exe.

$TMPDIR

$TMP

$TEMP Directory in which temporary files are located. The cvsnt server uses TMPDIR. Section A.4, for a description of how
to specify this. Some parts of cvsnt will always use /tmp (via the tmpnam function provided by the system).
On Windows, TMP is used (via the _tempnam function provided by the system).

The patch program which is used by the cvsnt client uses TMPDIR, and if it is not set, uses /tmp (at least with GNU
patch 2.1). Note that if your server and client are both running cvsnt 1.9.10 or later, cvsnt will not invoke an external patch
program.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 129/142

Appendix D

Compatibility between CVS Versions

It is always possible to upgrade from an earlier version of CVS or CVSNT to a newer version. Downgrading however is not
guaranteed to work. In particular downgrading from CVSNT 2.x to CVS 1.x will require some work on the repository format as
many features are unsupported in the older version.

The working directory format is compatible going back to cvsnt 1.5. It did change between cvsnt 1.3 and cvsnt 1.5. If you run
cvsnt 1.5 or newer on a working directory checked out with cvsnt 1.3, cvsnt will convert it, but to go back to cvsnt 1.3 you need
to check out a new working directory with cvsnt 1.3.

Support for the Entries.Extra file varies between versions, however this should not normally affect client operations. Client
versions of CVSNT before 2.0.55 used a Basereyv file to store edit information. If downgrading a client existing edits may be
lost.

The remote protocol is interoperable going back to cvsnt 1.5, but no further (1.5 was the first official release with the remote
protocol, but some older versions might still be floating around). In many cases you need to upgrade both the client and the
server to take advantage of new features and bugfixes, however.

When changing between platforms care should be taken to avoid platform-specific issues. RCS files are always in the same
format and are interoperable, however the CVSROQT control files are often written specifically for the platform, and will need
to be updated.

The Win32 port of CVSNT is a fully native application and does not require cygwin. It is not recommended that cygwin CVS
and CVSNT are installed on the same machine as confusion and incompatibities may arise between versions.

CVSNT obeys the CYGWIN environment variable when deciding where to store extended permissions. However its default is
ntea not ntsec, so this will be needed to be specified if using both environments. The recommended setting is CYGWIN="ntea
nontsec tty" which will force both CYGWIN and CVSNT to use the same permissions structure.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 130/ 142

Appendix E

Troubleshooting

If you are having trouble with cvsnt, this appendix may help. If there is a particular error message which you are seeing, then
you can look up the message alphabetically. If not, you can look through the section on other problems to see if your problem is
mentioned there.

E.1 Partial list of error messages

Here is a partial list of error messages that you may see from cvsnt. It is not a complete list--cvsnt is capable of printing many,
many error messages, often with parts of them supplied by the operating system, but the intention is to list the common and/or
potentially confusing error messages.

The messages are alphabetical, but introductory text such as cvs update: is not considered in ordering them.

In some cases the list includes messages printed by old versions of cvsnt (partly because users may not be sure which version of
cvsnt they are using at any particular moment).

cvs command: authorization failed: server host rejected access This is a generic response when trying to connect to a pserver
server which chooses not to provide a specific reason for denying authorization. Check that the username and password
specified are correct and that the CVSROOT specified is allowed by /etc/cvsnt/PServer. See Section 2.9.4.

file ’text’ failed The exact format of this message may vary depending on your system. It indicates a bug in cvsnt, which
can be handled as described in Appendix G.

cvs command: conflict: removed £ile was modified by second party This message indicates that you removed a file, and
someone else modified it. To resolve the conflict, first run cvs add £ile. If desired, look at the other party’s modification
to decide whether you still want to remove it. If you don’t want to remove it, stop here. If you do want to remove it,
proceed with cvs remove £ile and commit your removal.

cannot change permissions on temporary directory
Operation not permitted

This message has been happening in a non-reproducible, occasional way when we run the client/server testsuite, both on
Red Hat Linux 3.0.3 and 4.1. We haven’t been able to figure out what causes it, nor is it known whether it is specific to
linux (or even to this particular machine!). If the problem does occur on other unices, Operation not permitted would be
likely to read Not owner or whatever the system in question uses for the unix EPERM error. If you have any information
to add, please let us know as described in Appendix G. If you experience this error while using cvsnt, retrying the operation
which produced it should work fine.

cvs [server aborted]: Cannot check out files into the repository itself The obvious cause for this message (especially for non-
client/server cvsnt) is that the cvsnt root is, for example, /usr/local/cvsroot and you try to check out files when you are in a
subdirectory, such as /usr/local/cvsroot/test. However, there is a more subtle cause, which is that the temporary directory
on the server is set to a subdirectory of the root (which is also not allowed). If this is the problem, set the temporary
directory to somewhere else, for example /var/tmp; see TMPDIR in Appendix C, for how to set the temporary directory.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 131/142

cannot open CVS/Entries for reading: No such file or directory This generally indicates a cvsnt internal error, and can be
handled as with other cvsnt bugs (Appendix G). Usually there is a workaround--the exact nature of which would depend
on the situation but which hopefully could be figured out.

cvs [init aborted]: cannot open CVS/Root: No such file or directory This message is harmless. Provided it is not accompa-
nied by other errors, the operation has completed successfully. This message should not occur with current versions of
cvsnt, but it is documented here for the benefit of cvsnt 1.9 and older.

cvs [checkout aborted]: cannot rename file £ile to CVS/,,file: Invalid argument This message has been reported as in-
termittently happening with cvsnt 1.9 on Solaris 2.5. The cause is unknown; if you know more about what causes it, let us
know as described in Appendix G.

cvs [command aborted]: cannot start server via remd This, unfortunately, is a rather nonspecific error message which cvsnt
1.9 will print if you are running the cvsnt client and it is having trouble connecting to the server. Current versions of cvsnt
should print a much more specific error message. If you get this message when you didn’t mean to run the client at all, you
probably forgot to specify :local:, as described in Chapter 2.

ci: £ile,v: bad diff output line: Binary files - and /tmp/T2a22651 differ cvsnt 1.9 and older will print this message when
trying to check in a binary file if rcs is not correctly installed. Re-read the instructions that came with your rcs distribution
and the install file in the cvsnt distribution. Alternately, upgrade to a current version of cvsnt, which checks in files itself
rather than via rcs.

cvs checkout: could not check out £ile With cvsnt 1.9, this can mean that the co program (part of rcs) returned a failure. It
should be preceded by another error message, however it has been observed without another error message and the cause
is not well-understood. With the current version of cvsnt, which does not run co, if this message occurs without another
error message, it is definitely a cvsnt bug (Appendix G).

cvs [login aborted]: could not find out home directory This means that you need to set the environment variables that cvsnt
uses to locate your home directory. See the discussion of HOME, HOMEDRIVE, and HOMEPATH in Appendix C.

cvs update: could not merge revision rev of £ile: No such file or directory cvsnt 1.9 and older will print this message if
there was a problem finding the resmerge program. Make sure that it is in your PATH, or upgrade to a current version of
cvsnt, which does not require an external resmerge program.

cvs [update aborted]: could not patch £ile: No such file or directory This means that there was a problem finding the patch
program. Make sure that it is in your PATH. Note that despite appearances the message is not referring to whether it can
find £ile. If both the client and the server are running a current version of cvsnt, then there is no need for an external
patch program and you should not see this message. But if either client or server is running cvsnt 1.9, then you need patch.

cvs update: could not patch £ile; will refetch This means that for whatever reason the client was unable to apply a patch
that the server sent. The message is nothing to be concerned about, because inability to apply the patch only slows things
down and has no effect on what cvsnt does.

dying gasps from server unexpected There is a known bug in the server for CVS 1.9.18 and older which can cause this. For
me, this was reproducible if I used the -t global option. It was fixed by Andy Piper’s 14 Nov 1997 change to src/filesubr.c, if
anyone is curious. If you see the message, you probably can just retry the operation which failed, or if you have discovered
information concerning its cause, please let us know as described in Appendix G.

end of file from server (consult above messages if any) The most common cause for this message is if you are using an exter-
nal rsh program and it exited with an error. In this case the rsh program should have printed a message, which will appear
before the above message. For more information on setting up a cvsnt client and server, see Section 2.9.

cvs [update aborted]: EOF in key in rcs file £ile,v, cvs [checkout aborted]: EOF while looking for end of string in rcs file £i11
This means that there is a syntax error in the given rcs file. Note that this might be true even if rcs can read the file OK;
cvsnt does more error checking of errors in the rcs file. That is why you may see this message when upgrading from CVS
1.9 to CVS 1.10. The likely cause for the original corruption is hardware, the operating system, or the like. Of course,
if you find a case in which cvsnt seems to corrupting the file, by all means report it, (Appendix G). There are quite a few
variations of this error message, depending on exactly where in the rcs file cvsnt finds the syntax error.

cvs commit: Executing ‘mkmodules’ This means that your repository is set up for a version of cvsnt prior to cvsnt 1.8. When
using cvsnt 1.8 or later, the above message will be preceded by

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 132/142

cvs commit: Rebuilding administrative file database

If you see both messages, the database is being rebuilt twice, which is unnecessary but harmless. If you wish to avoid the
duplication, and you have no versions of cvsnt 1.7 or earlier in use, remove -i mkmodules every place it appears in your
modaules file. For more information on the modules file, see Section B.1.

missing author Typically this can happen if you created an rcs file with your username set to empty. cvsnt will, bogusly, create
an illegal rcs file with no value for the author field. The solution is to make sure your username is set to a non-empty value
and re-create the rcs file.

cvs [checkout aborted]: no such tag tag This message means that cvsnt isn’t familiar with the tag tag. Usually this means
that you have mistyped a tag name; however there are (relatively obscure) cases in which cvsnt will require you to try a
few other cvsnt commands involving that tag, before you find one which will cause cvsnt to update the val-tags file; see
discussion of val-tags in Section 2.2.2. You only need to worry about this once for a given tag; when a tag is listed in
val-tags, it stays there. Note that using -f to not require tag matches does not override this check; see Section A.5.

PANIC administration files missing This typically means that there is a directory named cvsnt but it does not contain the
administrative files which cvsnt puts in a CVS directory. If the problem is that you created a CVS directory via some
mechanism other than cvsnt, then the answer is simple, use a name other than cvsnt. If not, it indicates a cvsnt bug
(Appendix G).

rcs error: Unknown option: -x,v/ This message will be followed by a usage message for rcs. It means that you have an old
version of rcs (probably supplied with your operating system), as well as an old version of cvsnt. CVS 1.9.18 and earlier
only work with rcs version 5 and later; current versions of cvsnt do not run rcs programs.

cvs [server aborted]: received broken pipe signal This message seems to be caused by a hard-to-track-down bug in cvsnt or
the systems it runs on (we don’t know--we haven’t tracked it down yet!). It seems to happen only after a cvsnt command
has completed, and you should be able to just ignore the message. However, if you have discovered information concerning
its cause, please let us know as described in Appendix G.

Too many arguments! This message is typically printed by the log.pl script which is in the contrib directory in the cvsnt source
distribution. In some versions of cvsnt, log.pl has been part of the default cvsnt installation. The log.pl script gets called
from the loginfo administrative file. Check that the arguments passed in loginfo match what your version of log.pl expects.
In particular, the log.pl from cvsnt 1.3 and older expects the logfile as an argument whereas the log.pl from cvsnt 1.5 and
newer expects the logfile to be specified with a -f option. Of course, if you don’t need log.pl you can just comment it out
of loginfo.

cvs [update aborted]: unexpected EOF reading £ile,v See EOF in key in rcs file.

cvs [login aborted]: unrecognized auth response from server This message typically means that the server is not set up
properly. For example, if cvsmanager is running a bad cvs executable. To debug it further, find the log file which inetd
writes (/var/log/messages or whatever inetd uses on your system). For details, see Section E.2, and Section 2.9.4.1.

cvs server: cannot open /root/.cvsignore: Permission denied, cvs [server aborted]: can’t chdir(/root): Permission denied
See Section E.2.

cvs commit: Up-to-date check failed for “£file’ This means that someone else has committed a change to that file since the
last time that you did a cvs update. So before proceeding with your cvs commit you need to cvs update. cvsnt will merge
the changes that you made and the changes that the other person made. If it does not detect any conflicts it will report M
file and you are ready to cvs commit. If it detects conflicts it will print a message saying so, will report C £ile, and
you need to manually resolve the conflict. For more details on this process see Section 11.3.

Usage: diff3 [-exEX3 [-i | -m] [-L labell -L label3]] filel file2 file3
Only one of [exEX3] allowed

This indicates a problem with the installation of diff3 and resmerge. Specifically resmerge was compiled to look for GNU
diff3, but it is finding unix diff3 instead. The exact text of the message will vary depending on the system. The simplest
solution is to upgrade to a current version of cvsnt, which does not rely on external resmerge or diff3 programs.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 133/142

warning: unrecognized response “text’ from cvs server If text contains a valid response (such as ok) followed by an extra
carriage return character (on many systems this will cause the second part of the message to overwrite the first part), then
it probably means that you are using the :ext: access method with a version of rsh, such as most non-unix rsh versions,
which does not by default provide a transparent data stream. In such cases you probably want to try :server: instead of
sext:. If text is something else, this may signify a problem with your cvsnt server. Double-check your installation against
the instructions for setting up the cvsnt server.

cvs commit: [t ime] waiting for user’s lock in directory This is a normal message, not an error. See Section 11.5, for
more details.

cvs commit: warning: editor session failed This means that the editor which cvsnt is using exits with a nonzero exit status.
Some versions of vi will do this even when there was not a problem editing the file. If so, point the CVSEDITOR
environment variable to a small script such as:

#!/bin/sh
vi $x*
exit O

E.2 Trouble making a connection to a CVS server

This section concerns what to do if you are having trouble making a connection to a cvsnt server. If you are running the cvsnt
command line client running on Windows, first upgrade the client to cvsnt 1.9.12 or later. The error reporting in earlier versions
provided much less information about what the problem was. If the client is non-Windows, cvsnt 1.9 should be fine.

If the error messages are not sufficient to track down the problem, the next steps depend largely on which access method you are
using.

:ext: Try running the ssh program from the command line. For example: "ssh servername cvs -v" should print cvsnt version
information. If this doesn’t work, you need to fix it before you can worry about cvsnt problems.

:server: You don’t need a command line rsh program to use this access method, but if you have an rsh program around, it may
be useful as a debugging tool. Follow the directions given for :ext:.

:pserver: Errors along the lines of "connection refused" typically indicate that cvsmanager isn’t even listening for connections
on port 2401 whereas errors like "connection reset by peer” or "recv() from server: EOF" typically indicate that cvsmanager
is listening for connections but is unable to start cvsnt . Another less common problem is invisible control characters that
your editor "helpfully” added without you noticing.

One good debugging tool is to "telnet servername 2401". After connecting, send any text (for example "foo" followed by
return). If cvsnt is working correctly, it will respond with

cvs [authserver aborted]: bad auth protocol start: foo

If it fails to work at all, then make sure cvsmanager is working right.

On AIX systems, the system will often have its own program trying to use port 2401. This is AIX’s problem in the sense
that port 2401 is registered for use with cvsnt. I hear that there is an AIX patch available to address this problem.

:gserver: If you cannot connect using gserver, ensure that your kerberos installation is correctly configured. You will need a
working PAM configuraiton if your system uses that, and nsswitch.conf may need to be configured to recognise kerberos
users.

Kerberos is rather difficult to configure, and it is beyond the scope of this manual. There are many resources on the internet
to help you with this.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 134 /142

Appendix F

Credits

March Hare Software Ltd has been the vendor of CVSNT since 2004 and has provided hundreds of thousands of dollars worth of
development resources, plus IT infrastruture (computers, internet, servers etc), office space and resources (power, internet etc.)
to the project.

http://www.march-hare.com/cvspro/

In addition to the staff, there are many contributors to the open Source CVS, CVSNT, CVSWEB, CVSWEBNT, WINCVS,
TORTOISECVS, and BUGZILLA projects whose tremendous effort and support has helped the development of CVSNT.

Tony Hoyle has been instrumental in the development of CVSNT and this manual, both as a valued member of staff and as a
volunteer.

For a more complete list of who has contributed to this manual see the file doc/ChangeLog in the cvsnt source distribution.

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 135/142

Appendix G

Dealing with bugs in CVS or this manual

Neither cvsnt nor this manual is perfect, and they probably never will be. If you are having trouble using cvsnt, or think you have
found a bug, there are a number of things you can do about it. Note that if the manual is unclear, that can be considered a bug in
the manual, so these problems are often worth doing something about as well as problems with cvsnt itself.

* For support please contact sales @march-hare.com. The mailing list is no longer used for support, but the history is maintained
online as well as the current bug database:

http://www.cvsnt.org/pipermail/cvsnt/
http://www.cvsnt.org/tt/
http://www.march-hare.com/pipermail/cvsnt/
http://customer.march-hare.com/webtools/bugzilla/tt.htm

e March Hare Software provide worldwide support including toll free numbers for telephone support in the USA, UK and
Australia. Security update notification, patches, installation and training are also included. March Hare can guarantee this
support because the people who have been developing CVS since 1999 work for us.

At the time of writing, support is available from US$27.88 per licensed user per year for CVS Suite customers (CVS Suite is
available for $139.40 ea.).

* If you got cvsnt through a distributor, such as an operating system vendor or a vendor of freeware cd-roms, you may wish to
see whether the distributor provides support. Often, they will provide no support or minimal support, but this may vary from
distributor to distributor.

* If you have the skills and time to do so, you may wish to fix the bug yourself using the supplied source code. Please submit
your fix to support@march-hare.com for inclusion in future releases of cvsnt.

* There may be resources on the net which can help. A good place to start is:

http://www.cvsnt.org/

or

http://www.march-hare.com/cvspro/

mailto:sales@march-hare.com
mailto:support@march-hare.com

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051

136 /142

Chapter 17

Index

!, in modules file, 107

-a, in modules file, 105

-d, in modules file, 107

-e, in modules file, 107, 108

-1, in modules file, 107, 108

-j (merging branches), 37

-j (merging branches), and keyword substitution, 39
-k (keyword substitution), 60
-0, in modules file, 107, 108

-s, in modules file, 107

-t, in modules file, 107, 108

-u, in modules file, 108

files, 102

.bashre, setting CVSROOT in, 6
.cshre, setting CVSROOT in, 6
.cvsrc file, 69

.profile, setting CVSROOT in, 6
.teshre, setting CVSROOT in, 6
/etc/cvsnt/PServer, 126
/usr/local/cvsroot, as example repository, 6
:ext:, setting up, 15

:ext:, troubleshooting, 133
:fork:, setting up, 19

:gserver:, setting up, 19
:gserver:, troublshooting, 133
:local:, setting up, 6

:pserver:, setting up, 18
:pserver:, troubleshooting, 133
:server:, setting up, 15

:server:, troubleshooting, 133
:sserver:, setting up, 18

:ssh:, setting up, 15

:sspi:, setting up, 18
<<LL<, 53

>>>>>>>, 53

#cvs.lock, removing, 53
#cvs.lock, technical details, 9
#cvs.rfl, and backups, 14
#cvs.rfl, removing, 53
#cvs.rfl, technical details, 9
#evs.tfl, 9

#cvs.wil, removing, 53
#cvs.wil, technical details, 9
&, in modules file, 106
__files (VMS), 102

A

Abandoning work, 56

Access a branch, 35

Access control lists (ACLs), 21

AclMode, in CVSROOT/config, 125

ActiveScript support, 123

add, 41, 72

Adding a tag, 29

Adding files, 41

Admin, 73

Administrative files (intro), 12

Administrative files (reference), 105

Administrative files, editing them, 13

Alias modules, 105

Alias tags, 32

Alias, Repository, 20

ALL in commitinfo, 113

Ampersand modules, 106

annotate, 47, 74

Atomic transactions, 54

Atomicity, 54

Attic, 9

Authenticated client, using, 18

Authenticating server, setting up, 17

Authentication, stream, 69

Author keyword, 59

authserver, 17

authserver (client/server connection method), port specifica-
tion, 17

Automatically ignored files, 122

Avoiding editor invocation, 72

B

Backing up, repository, 14

Base directory, in CVS directory, 12
BASE, as reserved tag name, 29
BASE, special tag, 72

Bill of materials, 66

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051

137 /142

Binary files, 48

Branch keyword, 59

Branch merge example, 37
Branch number, 28, 36

Branch, accessing, 35

Branch, check out, 35

Branch, creating a, 34

Branch, identifying, 35

Branch, retrieving, 35

Branch, vendor-, 63

Branches motivation, 34
Branches, copying changes between, 34
Branches, sticky, 35

Branching, 34

Bringing a file up to date, 51
Bugs in this manual or CVS, 135
Bugs, reporting, 135

Builds, 66
C
chacl, 75

Changes, copying between branches, 34
Changesets, 32

Changing a log message, 73

Changing passwords, 23

Check out a branch, 35

Checked out copy, keeping, 123

Checkin program, 107

Checking commits, 113

Checking out source, 3

checkout, 75

Checkout program, 107

Checkout, as term for getting ready to edit, 56
Checkout, example, 3

checkoutlist, 122

Choosing, reserved or unreserved checkouts, 57
chown, 78

Chroot, running within, 23

Cleaning up, 4

Client/Server Operation, 14

Client/Server Operation, port specification, 14, 17
co, 75

Command structure, 68

commit, 78

Commit files, 110

Commit identifiers, 32

Commit, when to, 58

commitid, 32

Commitld keyword, 59

COMMITID, internal variable, 125
Commitinfo, 113

Committing changes, 3

Common options, 71

Common syntax of info files, 111
Compeatibility, between CVS versions, 129
Compression, 70

COMSPEC, environment variable, 128

config, in CVSROOT, 125
Configuration, Server, 126

Conflict markers, 53

Conflict resolution, 53

Conflicts (merge example), 52
Contributors (cvsnt program), 1
Contributors (manual), 134

Copying a repository, 14

Copying changes, 34

Correcting a log message, 73
Creating a branch, 34

Creating a project, 25

Creating a repository, 13

Credits (cvsnt program), 1

Credits (manual), 134
CVROOT/shadow, 123

CVS 1.6, and watches, 57

cvs add, 41

cvs annotate, 47

CVS command structure, 68

CVS directory, in repository, 9

CVS directory, in working directory, 10
cvs edit, 56

cvs editors, 56

CVS passwd file, 17

cvs remove, 42

cvs unedit, 56

cvs watch add, 55

cvs watch off, 54

cvs watch on, 54

cvs watch remove, 55

cvs watch ro, 54

cvs watchers, 56

CVS, introduction to, 1

CVS, versions of, 129

CVS/Base directory, 12

CVS/Entries file, 11
CVS/Entries.Backup file, 11
CVS/Entries.Extra file, 12
CVS/Entries.Extra.Old file, 12
CVS/Entries.Log file, 11
CVS/Entries.Old file, 11
CVS/Entries.Static file, 12
CVS/Notify file, 12

CVS/Notify.tmp file, 12
CVS/Rename file, 12
CVS/Repository file, 10

CVS/Root file, 6

CVS/Tag file, 12

CVS/Template file, 12
CVS_CLIENT_LOG, environment variable, 127
CVS_DIR, environment variable, 128
CVS_EXT, environment variable, 127
CVS_RSH, environment variable, 127
CVS_SERVER_LOB, environment variable, 128
CVS_SERVER_SLEEP, environment variable, 128
cvsadmin, 73

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051

138 /142

CVSCONEF, environment variable, 128
CVSEDITOR, environment variable, 3
CVSEDITOR, internal variable, 125
cvsignore (admin file), global, 122
CVSIGNORE, environment variable, 127
CVSLIB, environment variable, 128
cvslockd, 24

cvsnt, history of, |

CVSPID, internal variable, 125

cvsrc file, 69

CVSREAD, environment variable, 127
CVSREAD, overriding, 70

cvsroot, 6

CVSROOT (file), 105

CVSROOT, environment variable, 6
CVSROOT, internal variable, 125
CVSROOT, module name, 12
CVSROOT, multiple repositories, 13
CVSROOT, overriding, 69

CVSROOT, storage of files, 10
CVSROOT/admin, 23
CVSROOT/config, 125
CVSROOT/cvsre file, 69
CVSROOT/keywords, 118
CVSUMASK, environment variable (Unix only), 8
cvswrappers, 109

CVSWRAPPERS, environment variable, 109, 127
cygwin, compatibility issues, 129

D

Date keyword, 59

Dates, 71

Dead state, 9

Decimal revision number, 28
DEFAULT in commitinfo, 113
DEFAULT in verifymsg, 113
Defining a module, 26
Defining modules (intro), 12
Defining modules (reference manual), 105
Deleting files, 42

Deleting revisions, 73
Deleting sticky tags, 33
Deleting tags, 31

Descending directories, 40
Device nodes, 67

Diff, 4

diff, 80

Differences, merging, 38
Directories, moving, 45
Directories, removing, 43
Directory, descending, 40
Disjoint repositories, 13
Distributing log messages, 114
driver.c (merge example), 51

E
edit, 56, 82

Editing administrative files, 13

Editing the modules file, 26

Editor, avoiding invocation of, 72
EDITOR, environment variable, 3
EDITOR, internal variable, 125
EDITOR, overriding, 69

editors, 56, 83

Email notification, 119

emerge, 53

Encryption, 70

Entries file, in CVS directory, 11
Entries.Backup file, in CVS directory, 11
Entries.Extra file, in CVS directory, 12
Entries.Extra.Old file, in CVS directory, 12
Entries.Log file, in CVS directory, 11
Entries.Old file, in CVS directory, 11
Entries.Static file, in CVS directory, 12
Environment variables, 127

environment variables, passed to administrative files, 125
Errors, reporting, 135

Example of a work-session, 3

Example of merge, 51

Example, branch merge, 37

Excluding directories, in modules file, 107
Exit status, of commitinfo, 113

Exit status, of CVS, 68

Exit status, of editor, 133

Exit status, of taginfo, 46

Exit status, of verifymsg, 113

export, 83

Export program, 107

extnt.exe, 16

extnt.ini, 16

F

Fetching source, 3

File had conflicts on merge, 50
File locking, 50

File permissions, general, 8
File status, 50

fileattr.xml, in repository, 9
Files, moving, 43

Files, reference manual, 105
Filesystem locks (obsolete), 9
Fixing a log message, 73
Forcing a tag match, 71

fork, access method, 19

Form for log message, 117
Format of CVS commands, 68

G

Getting started, 3
Getting the source, 3
Global cvsignore, 122
Global options, 69
Group, 8

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051 139/142

gserver (client/server connection method), port specification, Linear development, 28

14 Link, symbolic, importing, 87
GSSAPI, 19 List, mailing list, 2
Gzip, 70 Locally Added, 50

Locally Modified, 50

H Locally Removed, 50
Hard links, 67 LockDir, in CVSROOT/config, 126
HEAD, as reserved tag name, 29 Locker keyword, 59
HEAD, special tag, 72 Locking files, 50
Header keyword, 59 Locks, cvs, and backups, 14
history, 84 Locks, cvs, introduction, 53
History browsing, 46 Locks, cvs, technical details, 9
History file, 123 Lockserver, 24
History files, 8 LockServer, in CVSROOT/config, 126
History of cvsnt, 1 Lockserver, setting up, 24
historyinfo, 117 log, 89
HOME, environment variable, 127 Log information, saving, 123
HOMEDRIVE, environment variable, 127 Log keyword, 59
HOMEPATH, environment variable, 127 Log message entry, 3

Log message template, 117
Log message, correcting, 73
Id keyword, 59 Log message, verifying, 113
Ident (shell command), 60 Log messages, 14

Ident%fy%ng a branch, 35 LogHistory, in CVSROOT/config, 126
Identifying files, 59

I

Login, 18
Ignored files, 122 login, 91
Ignoring files, 122 loginfo, 114
import, 86 Logout, 18
Importing files, 25 logout, 91
Importing files, from other version control systems, 26 Is, 91
Importing modules, 63 Isacl, 92
info, 88
Info files (syntax), 111 M
Informing others, 53 Mail, automatic mail on commit, 53
init, 13, 87 Mailing list, 2
Internal variables, 124 Mailing log messages, 114
Introduction to CVS, 1 Main trunk and branches, 34
Isolation, 46 make, 66
Many repositories, 13
J) Markers, conflict, 53
Join, 37 Merge, an example, 51
K Merge, branch example, 37

Merging, 34

Keepi hecked out , 123 .
cepIng a checied out copy. Merging a branch, 37

Kerberos, using :gserver:, 19

Kerberos, using kerberized rsh, 15 Mergmg a file, 5.1 .

. Merging two revisions, 38
Keyword expansion, 59 Merei dk d substitution. 39
Keyword List, 59 erging, and keyword substitution, :

mkmodules, 131

Modifications, copying between branches, 34
Module status, 107

Module, defining, 26

Modules (admin file), 105

Keyword substitution, 59

Keyword substitution, and merging, 39
Keyword substitution, changing modes, 60
keywords, 118

Kllag, 60 Modules file, 12

L Modules file program options, 108
Layout of repository, 6 Modules file, changing, 26
Left-hand options, 69 modules.db, 10

Library interface, 112 modules.dir, 10

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051

140/ 142

modules.pag, 10

modules2 (admin file), 108
modules2, compared to modules, 108
modules2, syntax, 108
Motivation for branches, 34
Moving a repository, 14
Moving directories, 45
Moving files, 43

Moving tags, 31

Multiple developers, 50
Multiple repositories, 13

N

Name keyword, 59

Name, symbolic (tag), 29
Needs Checkout, 50

Needs Merge, 50

Needs Patch, 50

Newsgroups, 2

notify, 118

notify (admin file), 55

Notify file, in CVS directory, 12
Notify.tmp file, in CVS directory, 12
Number, branch, 28, 36
Number, revision-, 28

(0

Option defaults, 69

Options, global, 69

Options, in modules file, 107
Outdating revisions, 73
Overlap, 51

Overriding CVSREAD, 70
Overriding CVSROOT, 69
Overriding EDITOR, 69
Overriding rcsBIN, 69
Overriding TMPDIR, 69
Overview, 1

Ownership, saving in CVS, 67

P

Parallel repositories, 13

passwd, 93

passwd (admin file), 17

PATH, environment variable, 127
Per-directory sticky tags/dates, 12
Permissions, general, 8
Permissions, saving in CVS, 67
Policy, 58

port, specifying for remote repositories, 14, 17
postcommand, 116
Postcommand actions, 116
postcommit, 117

postmodule, 117

Postmodule actions, 117
precommand, 116

Precommand actions, 116

Precommit checking, 113

Prefix, Repository, 20

premodule, 116

Premodule actions, 116

pserver (client/server connection method), port specification,
14

PVCS, importing files from, 26

R

rannotate, 93

rchacl, 94

rchown, 94

rcs history files, 8

RCS keywords, redefining, 118

rcs revision numbers, 29

rcs, importing files from, 26
rcs-style locking, 50

rcsBIN, overriding, 69

resfile keyword, 60

RCSHeader keyword, 59

rcsinfo, 117

rdiff, 94

Read-only files, and -r, 70
Read-only files, and CVSREAD, 127
Read-only files, and watches, 54
Read-only files, in repository, 8
Read-only mode, 70

Read-only repository access, 23
readers (admin file), 23
REAL_CVSROOT, internal variable, 125
Recursive (directory descending), 40
Reference manual (files), 105
Reference manual for variables, 127
Regular expression syntax, 111
Regular modules, 106

release, 95

Releases, revisions and versions, 28
Releasing your working copy, 4
Remote repositories, 14

Remote repositories, port specification, 14, 17
Remove, 42

remove, 96

Removing a change, 38

Removing directories, 43

Removing files, 42

Removing tags, 31

Removing your working copy, 4
rename, 97

Rename file, in CVS directory, 12
Renaming directories, 45

Renaming files, 43

Renaming tags, 31

Replacing a log message, 73
Reporting bugs, 135

Repositories, multiple, 13
Repositories, remote, 14
Repositories, remote, port specification, 14, 17

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051

Repository (intro), 6

Repository administrators, 23
Repository Alias, 20

Repository file, in CVS directory, 10
Repository Prefix, 20

Repository, backing up, 14

Repository, example, 6

Repository, how data is stored, 7
Repository, moving, 14

Repository, setting up, 13
RereadLogAfterVerify, in CVSROOT/config, 126
Reserved checkouts, 50

Resetting sticky tags, 33

Resolving a conflict, 53

Restoring old version of removed file, 38
Resurrecting old version of dead file, 42
Retrieve a branch, 35

Retrieving an old revision using tags, 30
Reverting to repository version, 56
Revision keyword, 60

Revision management, 58

Revision numbers, 28

Revision numbers (branches), 36
Revision tree, 28

Revision tree, making branches, 34
Revisions, merging differences between, 38
Revisions, versions and releases, 28
Right-hand options, 71

rlog, 97

rls, 91

rlsacl, 93

Root file, in CVS directory, 6

rtag, 31, 97

rtag, creating a branch using, 34

S
Saving space, 73
SCCS, importing files from, 26
script.js
javascript, 123
script.pl
perlscript, 123
script.rb
rubyscript, 123
script.vbs
vbscript, 123
Security (intro), 21
Security, example, 21
Security, file permissions in repository, 8
Security, GSSAPI, 19
Security, of pserver, 19
Security, of sserver, 19
Security, of sspi, 19
Security, running as a nonprivileged user, 23
Security, running within a chroot jail, 23
Security, setuid (Unix only), 8
Secutiry, of ntserver, 19

Server configuration, 126
Server, CVS, 14

Server, temporary directories, 24
sessionid, 32

SESSIONID, internal variable, 125

Setgid (Unix only), 8

Setting permissions for files and directories, 21

Setting up a repository, 13
Setting up the Lockserver, 24
Setuid (Unix only), 8

Shadow file, 123

Source keyword, 60

Source, getting cvsnt source, |
Source, getting from CVS, 3
Special files, 67

Specifying dates, 71
Spreading information, 53

sserver (client/server connection method), port specification,

14
ssh, 15

ssh replacements (Kerberized RSH, &c), 15
sspi (client/server connection method), port specification,

14
Starting a project with CVS, 25
State keyword, 60
status, 98
Status of a file, 50
Status of a module, 107
Sticky date, 33
Sticky tags, 32
Sticky tags, resetting, 33
Sticky tags/dates, per-directory, 12
Storing log messages, 114
Stream authentication, 69
Structure, 68
Subdirectories, 40
Symbolic link, importing, 87
Symbolic links, 67
Symbolic name (tag), 29
Syntax of info files, 111

SystemAuth, in CVSROOT/config, 125

T

tag, 30, 98

Tag file, in CVS directory, 12
Tag program, 107

tag, command, introduction, 29
tag, creating a branch using, 34
Tag, example, 29

Tag, retrieving old revisions, 30
Tag, symbolic name, 29
taginfo, 46

Tags, 29

Tags, alias, 32

Tags, deleting, 31

Tags, moving, 31

Tags, renaming, 31

cvsnt--Concurrent Versions System (cvsnt) 2.8.01.9051

142 /142

Tags, sticky, 32

tc, Trivial Compiler (example), 3
Team of developers, 50

TEMP, environment variable, 128
Template file, in CVS directory, 12
Template for log message, 117
Temporary directories, and server, 24
Temporary files, location of, 128
Third-party sources, 63

Time, 71

Timezone, in input, 71

Timezone, in output, 89

TMP, environment variable, 128
TMPDIR, environment variable, 128
TMPDIR, overriding, 69
TopLevelAdmin, in CVSROOT/config, 125
Trace, 70

Traceability, 46

Tracking sources, 63

triggers, 112

Trivial Compiler (example), 3
Typical repository, 6

U

Umask, for repository files (Unix only), 8
Undoing a change, 38

unedit, 56, 99

Unknown, 50

Unreserved checkouts, 50

Up-to-date, 50

update, 100

Update, introduction, 51

update, to display file status, 51

Updating a file, 51

User aliases, 17

User variables, 125

USER, internal variable, 125

users (admin file), 55

Users, adding and removing, 21

Using CVSNT protocols with 3rd party clients, 16

A\

Variables, 124

Vendor, 63

Vendor branch, 63

verifymsg, 113

version, 102

Versions, of CVS, 129

Versions, revisions and releases, 28
Viewing differences, 4
VIRTUAL_CVSROOT, internal variable, 125
VISUAL, internal variable, 125

w

watch, 103
watch add, 55
watch off, 54

watch on, 54

watch remove, 55

watch rw, 54

Watcher, in CVSROOT/config, 126
watchers, 56, 103

Watches, 54

wdiff (import example), 63

Web pages, maintaining with CVS, 123
What (shell command), 60

What branches are good for, 34
What is CVS not?, 2

What is CVS?, 1

When to commit, 58

Work-session, example of, 3
Working copy, 50

Working copy, removing, 4
Wrappers, 109

writers (admin file), 23

X
xdiff, 103

Z
Zone, time, in input, 71
Zone, time, in output, 89

	Overview
	What is CVS?
	What is CVS not?
	A sample session
	Getting the source
	Committing your changes
	Cleaning up
	Viewing differences

	The Repository
	Telling CVS where your repository is
	How data is stored in the repository
	Where files are stored within the repository
	File permissions
	The attic
	The CVS directory in the repository
	CVS locks in the repository
	How files are stored in the CVSROOT directory

	How data is stored in the working directory
	The administrative files
	Editing administrative files

	Multiple repositories
	Creating a repository
	Backing up a repository
	Moving a repository
	Remote repositories
	Server requirements
	Connecting with ssh
	Using 3rd party clients via the extnt wrapper
	Direct connection with password authentication
	Setting up the server for Authentication
	CVS passwd file
	Using the client with password authentication
	Security considerations with password authentication

	Direct connection with GSSAPI
	Connecting with fork
	Using repository aliases

	Security
	How to set up security
	How to add and delete users
	Setting permissions for files and directories
	Groups of users can be assigned permissions
	Running CVSNT as a nonprivileged user
	Running within a chroot jail
	Setting and changing passwords
	Repository administrators
	Read-only repository access
	Temporary directories for the server
	The CVSNT lockserver

	Starting a project with CVS
	Setting up the files
	Creating a directory tree from a number of files
	Creating Files From Other Version Control Systems
	Creating a directory tree from scratch

	Defining the module

	Revisions
	Revision numbers
	Versions, revisions and releases
	Assigning revisions
	Tags-Symbolic revisions
	Specifying what to tag from the working directory
	Specifying what to tag by date or revision
	Deleting, moving, and renaming tags
	Tagging and adding and removing files
	Alias tags
	Commit identifiers
	Sticky tags

	Branching and merging
	What branches are good for
	Creating a branch
	Accessing branches
	Branches and revisions
	Magic branch numbers
	Merging an entire branch
	Merging from a branch several times
	Merging differences between any two revisions
	Merging can add or remove files
	Merging and keywords

	Recursive behavior
	Adding, removing, and renaming files and directories
	Adding files to a directory
	Removing files
	Removing directories
	Moving and renaming files
	The Normal way to Rename
	The old way to Rename
	Moving the history file
	Copying the history file

	Moving and renaming directories

	History browsing
	Log messages
	The history database
	User-defined logging
	The taginfo file

	Annotate command

	Handling binary files
	The issues with binary files
	How to store binary files

	Multiple developers
	File status
	Bringing a file up to date
	Conflicts example
	Informing others about commits
	Several developers simultaneously attempting to run CVS
	Mechanisms to track who is editing files
	Setting up cooperative edits
	Telling CVS to notify you when someone modifies a file
	How to edit a file which is being watched
	Information about who is watching and editing
	Using watches with old versions of CVS

	Choosing between reserved or unreserved checkouts

	Revision management
	When to commit?

	Keyword substitution
	Keyword List
	Using keywords
	Avoiding substitution
	Substitution modes
	Log

	Tracking third-party sources
	Importing for the first time
	Updating with the import command
	Reverting to the latest vendor release
	How to handle binary files with cvs import
	How to handle keyword substitution with cvs import
	Multiple vendor branches

	How your build system interacts with CVS
	Special Files
	Guide to CVS commands
	Overall structure of CVS commands
	CVS's exit status
	Default options and the ~/.cvsrc and CVSROOT/cvsrc files
	Global options
	Common command options
	add--Add files to repository
	add options

	admin--Administration
	admin options

	annotate--find out who made changes to the files
	annotate options

	chacl--Change access control lists
	chacl options

	checkout--Check out sources for editing
	checkout options
	checkout examples

	chown--Change directory owner
	chown options

	commit--Check files into the repository
	commit options
	commit examples
	Committing to a branch
	Creating the branch after editing

	diff--Show differences between revisions
	diff options
	diff examples

	edit--Mark files for editing
	edit options

	editors--Find out who is editing a file
	editors options

	export--Export sources from CVS, similar to checkout
	export options

	history--Show status of files and users
	history options

	import--Import sources into CVS, using vendor branches
	import options
	import output
	import examples

	init--Initialise a new repository
	init options

	info--Get information about the client and server
	info options

	log--Print out log information for files
	log options
	log examples

	login--Cache a client password locally
	login options

	logout--Remove the cached entry for a password
	logout options

	ls--list modules, files and directories in the repository
	ls options

	lsacl--Show file/directory permissions
	lsacl options

	rlsacl--Show remote file/directory permissions
	passwd--Modify a user's password or create a user
	passwd options

	rannotate--Show who made changes to remote files
	rchacl--Change remote access control lists
	rchown--Change owner of a remote directory
	rdiff--'patch' format diffs between releases
	rdiff options
	rdiff examples

	release--Indicate that a Module is no longer in use
	release options
	release output
	release examples

	remove--Remove files from the working directory
	remove options

	rename--Rename files in the repository
	rlog--Return log history of remote file
	rtag--Mark a single revision over multiple files
	status--Display the state of a file in the working directory
	status options

	tag--Create a tag or branch
	tag options

	unedit--Mark edit as finished without committing
	unedit options

	update--Bring work tree in sync with repository
	update options
	update output

	version--Display client and server versions.
	version options

	watch--Watch for changes in a file
	watch options

	watchers--list watched files
	watchers options

	xdiff--External diff
	xdiff options

	Reference manual for Administrative files
	The modules file
	Alias modules
	Regular modules
	Ampersand modules
	Excluding directories
	Module options
	How the modules file "program options" programs are run

	The modules2 file
	How the modules2 file differs from the modules file
	Modules2 syntax

	The cvswrappers file
	default wrappers

	The commit support files
	The common syntax

	Triggers
	Commitinfo
	Verifying
	Loginfo
	Loginfo example
	Loginfo default standard input format

	Precommand
	postcommand
	premodule
	postmodule
	postcommit
	historyinfo
	rcsinfo
	notify
	keywords
	Storing user defined information using keywords

	Email notification
	Configure the commit support files
	Write the template
	Configure the server
	Keywords used in template files
	commit emails
	tag emails
	notify emails

	Ignoring files via cvsignore
	The checkoutlist file
	The history file
	The shadow file
	Keeping a checked out copy

	ActiveScript support
	Expansions in administrative files
	The CVSROOT/config configuration file
	The server configuration files

	All environment variables which affect CVS
	Compatibility between CVS Versions
	Troubleshooting
	Partial list of error messages
	Trouble making a connection to a CVS server

	Credits
	Dealing with bugs in CVS or this manual
	Index

